

Khôlle n° 16 semaine du 10 février

1 Réduction : partie 2

- Des vecteurs propres associés à des valeurs propres distinctes d'une matrice symétrique réelle sont orthogonaux. Toute matrice symétrique réelle possède au moins une valeur propre réelle. Théorème spectral : toute matrice symétrique réelle est orthodiagonalisable, c'est-à-dire si $S \in \mathcal{S}_n(\mathbb{R})$, il existe $P \in O_n(\mathbb{R})$ et D diagonale telle que $S = PDP^{\intercal}$.
- Si $S \in \mathcal{G}_n(\mathbb{R})$, l'application $q_S : X \mapsto X^\intercal S X = \langle SX, X \rangle$ est polynomiale de degré 2 : c'est la forme quadratique associée à S : expression à savoir expliquer $\sum_{i,j} s_{i,j} x_i x_j$. Matrices symétriques positives, définies positives. Notation $\mathcal{G}_n^+(\mathbb{R})$ et $\mathcal{G}_n^{++}(\mathbb{R})$. Caractérisation spectrale. Application au Calcul différentiel : (CN_2) si f admet un minimum local en $a \in U$, alors $H_f(a) \in \mathcal{G}_n^+(\mathbb{R})$; (CS_2) si $a \in U$ est un point critique et si $H_f(a) \in \mathcal{G}_n^{++}(\mathbb{R})$, alors f admet un minimum local strict en a. Cas particulier des fonctions de deux variables avec les notations de Monge r, s, t et la condition $rt s^2 \neq 0$.
- $\underline{\text{Si }\lambda \in \text{Sp}_{\mathbb{K}}(u)}$, alors $P(\lambda) \in \text{Sp}_{\mathbb{K}}(P(u))$. Conséquence, $\underline{\text{si }P}$ est annulateur de u, alors $\text{Sp}_{\mathbb{K}}(u) \subset \text{Rac}_{\mathbb{K}}(P)$; on retrouve le cas des projections et des symétries.
- Lemme des noyaux, version simple : si $P = \prod_{i=1}^{d} (X \alpha_i)$ est SARS, alors pour tout endomorphisme u, $\operatorname{Ker} P(u) = \bigoplus_{i=1}^{d} \operatorname{Ker}(u \alpha_i \operatorname{Id})$ (démo. vue avec les polynômes de Lagrange). Lemme des noyaux (cas général) si $P = \prod_{i=1}^{d} (X \alpha_i)^{m_i}$ (admis).
- \bullet <u>Théorème important</u> : u est diagonalisable ssi u possède un polynôme annulateur SARS. Conséquence : diagonalisabilité d'un endomorphisme induit par un sev stable.
- Endomorphismes/matrices carrées trigonalisables. CNS de trigonalisabilité par le polynôme caractéristique. Trigonalisation des matrices $M \in \mathcal{M}_n(\mathbb{K})$ telles que $\sum_{\lambda} \dim E_{\lambda}(M) = n 1$. Cas des matrices 3×3 ayant une valeur propre triple telle que dim $E_{\lambda} = 1$ par la méthode des noyaux itérés (réduite de Jordan).
- Applications Une démonstration du théorème de Cayley-Hamilton : on montre avant que l'ensemble des matrices diagonalisables sur $\mathbb C$ est dense dans $\mathcal M_n(\mathbb C)$. Résolution des EDL_k homogènes à coefficients constants : on détermine avant $\mathrm{Ker}(\mathbb D-\lambda\mathrm{Id})^m$ où $\mathbb D$ est la dérivation.

2 Exercices de TD à savoir refaire

TD 10 2, 5, 12, 13, 20.