

Khôlle n° 11 semaine du 6 janvier

En souligné : démonstration de cours à savoir refaire.

1 Réduction

- Valeur propre d'un endomorphisme, vecteur propre, sous-espaces propres. En dimension finie, l'ensemble des valeurs propres s'appelle le spectre. Notations $\mathrm{Sp}_{\mathbb{K}}(u)$, $\mathrm{E}_{\lambda}(u)$.
- Si u et v commutent, tout sous-espace propre de l'un est stable par l'autre. Des sous-espaces propres associés à des valeurs propres distinctes sont toujours en somme directe. Toute famille (finie ou non) de vecteurs propres associés à des valeurs propres distinctes est libre. Si E est de dimension finie, alors $\forall u \in \mathcal{L}(E)$, $\operatorname{Card}(\operatorname{Sp}_K(u)) \leqslant \dim(E)$.
- Réduction des involutions linéaires : $E = E_1 \oplus E_{-1}$ interprétation en termes de symétrie par rapport à E_1 parallèlement à E_{-1} . En dimension finie : trace et déterminant. Réduction des idempotents linéaires, $E = E_0 \oplus E_1$ interprétation en termes de projection sur E_1 parallèlement à E_0 , et $E_1 = \text{Im}(p)$. En dimension finie : trace = rang.
 - Adaptation du vocabulaire pour les matrices carrées via l'endomorphisme canoniquement associé.
- Polynôme caractéristique d'une matrice carrée M défini par $\chi_{\rm M}=\det({\rm XI}_n-{\rm M})$, cas des matrices triangulaires. Expression en dimension 2. Cas général : $\chi_{\rm M}$ est unitaire, de degré n, le coefficient de degré n-1 est $-{\rm tr}({\rm M})$ et celui de degré 0 est $(-1)^n \det({\rm M})$. Le spectre de M est exactement l'ensemble des racines de $\chi_{\rm M}$. Expression de la trace et du déterminant si $\chi_{\rm M}$ est scindé. Deux matrices semblables ont même polynôme caractéristique, définition de χ_u si u est un endomorphisme en dimension finie. Exemples des symétries, des projections.
- Savoir expliquer pour quoi remplacer X par M dans $\det(\mathrm{XI}_n-\mathrm{M})$ pose problème. Le théorème de Cayley-Hamilton est démontré en dimension 2, admis sinon. Conséquence : $\dim \mathbb{K}[\mathrm{M}] \leqslant n$.
 - Si F est stable par u, alors χ_{u_F} divise χ_u .
- Soit $M \in \mathcal{M}_n(\mathbb{K})$ nilpotente. Son indice de nilpotence est $\leq n$. Son spectre est $\{0\}$. Si $\mathbb{K} = \mathbb{R}$, la réciproque est fausse. Si $\mathbb{K} = \mathbb{C}$, elle est vraie.
- Endomorphisme diagonalisable, matrice carrée diagonalisable. Diagonalisabilité d'une matrice n'ayant qu'une valeur propre, cas des nilpotentes. Si $u \in \mathcal{L}(u)$, alors u est diagonalisable si et seulement si $E = \bigoplus_{\lambda} E_{\lambda}$ ou encore si et seulement si $\sum_{\lambda} \dim E_{\lambda}(u) = \dim(E)$. Cas des matrices $M \in \mathcal{M}_n(\mathbb{K})$ ayant n valeurs propres distinctes.
- Pour toute valeur propre de $u, 1 \leq \dim \mathcal{E}_{\lambda}(u) \leq m_{\lambda}$ (multiplicité de λ dans χ_u), et u est diagonalisable si seulement si χ_u est scindé et $\dim \mathcal{E}_{\lambda}(u) = m_{\lambda}$ pour tout λ .
- Application aux suites récurrentes linéaires homogènes, matrice compagnon, cas où cette dernière est diagonalisable.
- Application aux systèmes différentiels linéaires homogènes à coefficients constants. Vu en TD : Si (λ, V) est un élément propre de $A \in \mathcal{M}_n(\mathbb{K})$, alors $t \mapsto e^{\lambda t}V$ est solution de X' = AX. Si A est diagonalisable, expression des solutions de X' = AX grâce à une base de vecteur propres.

2 Exercices de TD à savoir refaire

TD 7 1, 2, 3, 7, 8, 9, 15, 17, 18, 19, 20, 21, 22.