

Khôlle n° 9 semaine du 2 décembre

En souligné : démonstration de cours à savoir refaire.

1 Algèbre linéaire (partie 2)

- Déterminants d'une matrice carrée : il existe une unique application det : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ qui soit linéaire par rapport aux colonnes de sa variable matricielle, telle que $\det(\mathbb{M}) = 0$ dès que \mathbb{M} a deux colonnes égales et telle que $\det(\mathbb{I}_n) = 1$. Démonstration pour n = 2. Invariance par transposition, par transvection $\mathbb{L}_i \leftarrow \mathbb{L}_i + \alpha \mathbb{L}_j$ $(i \neq j)$, $\det(\lambda A)$, $\det(AB)$, caractérisation des matrices inversibles, $\det(A^{-1})$. Développement par rapport à une rangée (formule de Laplace), déterminant triangulaire et triangulaire par blocs.
- Déterminant de Vandermonde $\mathcal{V}(x_0, \dots x_n)$ et lien avec la théorie des polynômes interpolateur : $\underline{\mathbf{c}}$ 'est la matrice de $\mathbf{P} \mapsto (\mathbf{P}(x_0), \dots, \mathbf{P}(x_n))$, définie sur $\mathbb{K}_n[\mathbf{X}]$. Elle est inversible si et seulement si les x_0, \dots, x_n sont deux à deux distincts. Déterminant de Vandermonde.

2 Exercices de TD à savoir refaire

3 Espaces vectoriels normés

- Normes sur un K-espace vectoriel (K est \mathbb{R} ou \mathbb{C}). Normes $1, 2, \infty$ sur \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$ et $\mathcal{C}([a,b],\mathbb{R})$. L'inégalité de Cauchy-Schwarz donne l'inégalité triangulaire de la norme 2 sur \mathbb{R}^n . Expression de la norme 2 sur $\mathcal{M}_{n,p}(\mathbb{R})$ au moyen de la trace. Généralisation à \mathbb{C}^n , $\mathcal{M}_{n,p}(\mathbb{C})$ et $\mathcal{C}([a,b],\mathbb{C})$.
- Distance sur un ensemble, espace métrique, $(x,y) \mapsto \|x-y\|$ est une distance, notion de boule ouverte/fermée. Boule unité de \mathbb{R}^2 pour les trois normes usuelles : savoir tracer la boule pour $\|\cdot\|_1$ Convexité des boules dans un EVN. $\mathrm{GL}_n(\mathbb{K})$ n'est pas convexe.
- Parties bornées, propriétés (inclusion, singletons, réunion finie, parties finies), les boules sont bornées. Suites bornées. Fonctions bornées. L'espace $\mathfrak{B}(X,E)$ est muni de la norme $\|\cdot\|_{\infty,X}$. Notation $\overline{\ell^{\infty}}$ si $X=\mathbb{N}$.
- Les normes de $\mathbb R$ sont de la forme $\alpha|\cdot|$ avec $\alpha>0$. Tout $\mathbb K$ -espace vectoriel qui possède une base possède des normes, en particulier un $\mathbb K$ -espace vectoriel de dimension finie possède des normes. Il est équivalent de dire que les normes $\mathbb N$ et $\mathbb N'$ définissent les mêmes parties bornées ou de dire qu'il existe a,b>0 tels que $a\mathbb N\leqslant \mathbb N'\leqslant b\mathbb N$. Notion de normes équivalentes. Les normes $\|\cdot\|_1$ et $\|\cdot\|_\infty$ ne sont pas équivalentes dans $\mathscr C([0,1],\mathbb R)$ (regarder la suite $(x\mapsto nx^n)_{n\in\mathbb N^*}$).

4 Exercices de TD à savoir refaire

TD 5 : 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 15. TD 6 1, 2, 3, 4, 5.