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En souligné : démonstration de cours à savoir refaire.

1 Algèbre linéaire (partie 2)
• Polynômes de matrices/d’endomorphismes. Sous-espaces K[M] et K[u]. Relation PQ(M) = P(M)×Q(M)

et PQ(u) = P(u) ◦Q(u). Les éléments de K[M] (resp. de K[u]) commutent entre eux.

• Polynôme annulateur de M (resp. u). Exemples des symétries, projecteurs, homothéties, nilpotents.
Toute matrice carrée admet un polynôme annulateur (non nul). Idem pour les endomorphismes en dimension
finie. La dérivation de C∞(I,R) n’admet pas de polynôme annulateur non nul.

• Si M ∈ GLn(K), alors M−1 ∈ K[M]. Calcul de Mk grâce au reste de la division euclidienne de Xk

par un polynôme annulateur de M ; si P est un polynôme annulateur non nul d’une matrice carrée M, alors
dimK[M] ⩽ deg(P).

• Sous-espaces stables par un endomorphisme. Endomorphisme induit, Caractérisation matricielle de
l’existence d’un sous-espace stable. Si u et v commutent, alors Ker(v) et Im(v) sont stables par u. En parti-
culier, Ker(P(u)) et Im(P(u)) sont stables par u pour tout P ∈ K[X].

• Formes linéaires sur un espace vectoriel. Rappels sur l’espace dual E∗ et sa dimension si E est de
dimension finie. Base duale de E∗ associée à une base de E. Une forme linéaire est soit nulle, soit surjective.

• Hyperplans (en dimension quelconque) : il est équivalent de dire qu’un sev est le noyau d’une forme
linéaire non nulle ou de dire qu’il est supplémentaire d’une droite. En dimension finie, caractérisation par la
dimension « n−1 ». Équations d’un hyperplan H dans une base (en dimension finie). Équation d’un hyperplan
affine H= a+H dans une base (en dimension finie).

• Déterminants d’une matrice carrée : il existe une unique application det : Mn(K)→ K qui soit linéaire
par rapport aux colonnes de sa variable matricielle, telle que det(M) = 0 dès que M a deux colonnes égales et
telle que det(In) = 1. Démonstration pour n = 2. Invariance par transposition, par transvection Li ← Li+αLj

(i ̸= j), det(λA), det(AB), caractérisation des matrices inversibles, det(A−1). Développement par rapport à
une rangée (formule de Laplace), déterminant triangulaire et triangulaire par blocs.

• Déterminant de Vandermonde V(x0, . . . xn) et lien avec la théorie des polynômes interpolateur : c’est
la matrice de P 7→ (P(x0), . . . ,P(xn)), définie sur Kn[X]. Elle est inversible si et seulement si les x0, . . . , xn

sont deux à deux distincts. Déterminant de Vandermonde : on pourra demander, au choix,
— de montrer que l’application V : t 7→ det V(x0, . . . xn−1, t) est polynomiale avec un coefficient dominant

à expliciter.
— d’établir la relaltion Dn = an−1Dn−1 avec an−1 à déterminer (où Dn est le déterminant de Vander-

monde).
— de trouver une expression de Dn si l’on donne la relation Dn = an−1Dn−1.

Base de Lagrange (L0, . . . ,Ln) associés à x0, . . . , xn deux à deux distincts. Expression d’un polynôme de
Kn[X] dans cette base, cas du polynôme L interpolant les points (xi, yi).

• Deux matrices semblables ont même déterminant : savoir expliquer pourquoi on peut définir le déter-
minant d’un endomorphisme en dimension finie (non nulle).

• Déterminant d’un système de n vecteurs dans un K-ev de dimension n. Propriétés. Interprétation géo-
métrique : si n = 2, |detB(x1, x2)| est l’aire d’un parallélogramme, généralisation. Si f est un endomorphisme,
formule detB(f(x1), . . . , f(xn)) = det(f) detB(x1, . . . , xn). Relation « est orientée comme » sur l’ensemble
des bases d’un R-espace vectoriel de dimension finie. C’est une relation d’équivalence n’ayant que deux classes
d’équivalence. Notion d’orientation, d’espace orienté, de base directe. Orientation d’un plan dans R3 muni de
son orientation canonique.

2 Exercices de TD à savoir refaire
TD 4 (extrémums et EDP) : 6 (fait en cours), 10, 16. TD 5 : 1, 2, 3, 4, 5, 7, 11 (fait en cours).

1 http://vrohart.e-monsite.com/
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