

Khôlle n° 8 semaine du 25 novembre

En souligné : démonstration de cours à savoir refaire.

1 Algèbre linéaire (partie 2)

- Polynômes de matrices/d'endomorphismes. Sous-espaces $\mathbb{K}[M]$ et $\mathbb{K}[u]$. Relation $PQ(M) = P(M) \times Q(M)$ et $PQ(u) = P(u) \circ Q(u)$. Les éléments de $\mathbb{K}[M]$ (resp. de $\mathbb{K}[u]$) commutent entre eux.
- Polynôme annulateur de M (resp. u). Exemples des symétries, projecteurs, homothéties, nilpotents. Toute matrice carrée admet un polynôme annulateur (non nul). Idem pour les endomorphismes en dimension finie. La dérivation de $\mathscr{C}^{\infty}(I,\mathbb{R})$ n'admet pas de polynôme annulateur non nul.
- Si $M \in GL_n(\mathbb{K})$, alors $M^{-1} \in \mathbb{K}[M]$. Calcul de M^k grâce au reste de la division euclidienne de X^k par un polynôme annulateur de M. Si P est un polynôme annulateur non nul d'une matrice carrée M, alors dim $\mathbb{K}[M] \leq \deg(P)$.
- Sous-espaces stables par un endomorphisme. Endomorphisme induit, Caractérisation matricielle de l'existence d'un sous-espace stable. Si u et v commutent, alors $\operatorname{Ker}(v)$ et $\operatorname{Im}(v)$ sont u-stables. En particulier, $\operatorname{Ker}(P(u))$ et $\operatorname{Im}(P(u))$ sont u-stables pour tout $P \in \mathbb{K}[X]$.
- Formes linéaires sur un espace vectoriel. Rappels sur l'espace dual E^* et sa dimension si E est de dimension finie. Base duale de E^* associée à une base de E. Une forme linéaire est soit nulle, soit surjective. Description des formes linéaires sur K^n . Si φ et ψ sont des formes linéaires non nulles ayant même noyau, alors elles sont proportionnelles.
- Hyperplans (en dimension quelconque) : <u>il est équivalent de dire qu'un sev est le noyau d'une forme linéaire non nulle ou de dire qu'il est supplémentaire d'une droite</u>. En dimension finie, caractérisation par la dimension « n-1 ». <u>Équations d'un hyperplan H dans une base (en dimension finie)</u>. <u>Équation d'un hyperplan affine</u> $\mathcal{H} = a + H$ dans une base (en dimension finie).
- Déterminants d'une matrice carrée : il existe une unique application det : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ qui soit linéaire par rapport aux colonnes de sa variable matricielle, telle que $\det(\mathbb{M}) = 0$ dès que \mathbb{M} a deux colonnes égales et telle que $\det(\mathbb{I}_n) = 1$. Démonstration pour n = 2. Invariance par transposition, par transvection $\mathbb{L}_i \leftarrow \mathbb{L}_i + \alpha \mathbb{L}_j$ ($i \neq j$), $\det(\lambda A)$, $\det(AB)$, caractérisation des matrices inversibles, $\det(A^{-1})$. Développement par rapport à une rangée (formule de Laplace), déterminant triangulaire et triangulaire par blocs.
- Déterminant de Vandermonde $\mathcal{V}(x_0, \dots x_n)$ et lien avec la théorie des polynômes interpolateur : $\underline{\mathbf{c}}$ 'est la matrice de $\mathbf{P} \mapsto (\mathbf{P}(x_0), \dots, \mathbf{P}(x_n))$, définie sur $\mathbb{K}_n[\mathbf{X}]$. Elle est inversible si et seulement si les x_0, \dots, x_n sont deux à deux distincts. Déterminant de Vandermonde.

2 Exercices de TD à savoir refaire

| TD 5 | : 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 15.