Année 2025/26

Khôlle n° 8 semaine du 24 novembre

En souligné : démonstration de cours à savoir refaire.

1 Séries numériques (exercices seulement)

2 Calcul différentiel sur \mathbb{R}^n

- Fonctions partielles en un point d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$. Limite/continuité en un point d'une telle fonction. Si f est continue en $a = (a_1, \ldots, a_n)$, alors pour tout $k \in [\![1, n]\!]$, $f_{k,a}$ est continue en a_k , mais la réciproque est fausse. Dérivées partielles, classe \mathscr{C}^1 définie par la continuité des dérivées partielles.
- Théorème de l'approximation affine (démonstration quand n=2). Si f est de classe \mathscr{C}^1 , alors f est continue. Notion de fonction différentiable en un point. Différentielle de f au point a, notation $\mathrm{d} f_a$ ou $\mathrm{d} f(a)$. Il n'existe qu'une seule forme linéaire L sur \mathbb{R}^n telle que $f(a+h)-f(a)=\mathrm{L}(h)+o(\|h\|)$. Exemples de base : fonction constante, restriction d'une forme linéaire, et cas n=1. Propriétés calculatoires : d est linéaire, $\mathrm{d}(fg)_a$ et $\mathrm{d}\left(\frac{f}{g}\right)_a$ si $g(a)\neq 0$.
- Notions de forme différentielle de degré 1, écriture $P_1 dx_1 + ... + P_n dx_n$, formes (totales) exactes. Notation « δ » pour les 1-formes non exactes.
- Dérivée d'une composée : $\frac{\mathrm{d}}{\mathrm{d}t}f(x_1(t),\ldots,x_n(t))$ (<u>chain rule 1</u>), dérivées partielles de f^* : $(u,v)\mapsto f(x(u,v),y(u,v))$ (<u>chain rule 2</u>). Savoir expliquer l'écriture symbolique $\frac{\partial f}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial u}$. Écriture matricielle avec la jacobienne. Déterminant jacobien, exemple des coordonnées polaires.
- Il existe un seul vecteur, noté $\overrightarrow{\operatorname{grad}} f_a$ ou $\overrightarrow{\nabla} f(a)$ qui vérifie $\forall h \in \mathbb{R}^n$, $\mathrm{d} f_a(h) = \langle \overrightarrow{\operatorname{grad}} f_a, h \rangle$. Expression du gradient dans une BON de \mathbb{R}^n , cas de la base canonique. Expression du gradient « en polaires ». Chain rule 1 s'écrit aussi $(f \circ \gamma)'(t) = \langle \overrightarrow{\operatorname{grad}} f_{\gamma(t)}, \gamma'(t) \rangle = \mathrm{d} f_{\gamma(t)}(\gamma'(t))$.
- Courbe implicite d'équation f(x,y) = 0, point régulier. Courbes à connaître : \mathscr{C} : $x^2 + y^2 = 1$ et \mathscr{H} : $x^2 y^2 = 1$. On admet qu'au voisinage d'un point régulier, c'est le support d'un arc dont la dérivée ne s'annule pas. Le gradient est orthogonal à la tangente (définie comme la droite passant par $\gamma(t_0)$ dirigée par $\gamma'(t_0)$). Équation de la tangente dans un repère orthonormal. Le vecteur $\overrightarrow{\text{grad}} f_a$ est orienté vers les valeurs croissantes de f.
- Surface implicite d'équation f(x,y,z)=0, point régulier. Surfaces à connaître : S : $x^2+y^2+z^2=1$, C : $x^2+y^2-z^2=0$, PE : $x^2+y^2=z$, PH : $x^2-y^2=z$, H1 : $x^2+y^2-z^2=1$ et H2 : $x^2+y^2-z^2=-1$ (savoir raisonner par sections planes pour retrouver la forme). Par définition, le plan tangent à \mathcal{S} : f(x,y,z)=0 en un point régulier a est le plan affine passant par a dont $\overline{\operatorname{grad}} f_a$ est un vecteur normal. Équation du plan tangent en a dans un repère orthonormal.
- Dérivées partielles d'ordre supérieur, notations $\partial_{j,i}^2 f = \partial_j(\partial_i f)$ ou $\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$, fonctions de classe \mathscr{C}^2 (dérivées partielles secondes toutes continues). Théorème de Schwarz (admis), matrice hessienne $H_f(a)$: elle est symétrique si f est de classe \mathscr{C}^2 . Formule de Taylor-Young à l'ordre 2 (admise), écriture avec la hessienne.
- Exemples d'équations aux dérivées partielles ; quelques résolutions à l'aide d'un changement de variable donné. Savoir résoudre $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$ à l'aide de (X = x, Y = y x) et $\frac{\partial^2 \psi}{\partial x^2} \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0$.
- Extrémums globaux, globaux stricts, locaux, locaux stricts. Condition nécessaire du 1^{er} ordre : $\overrightarrow{\nabla} f(a) = \overrightarrow{0}$. Notion de point critique, de point col (ou selle) : exemple de $(x,y) \mapsto xy$ en (0,0). La CN1 exige de se placer sur un **ouvert** : savoir exhiber expliquer pourquoi.

3 Exercices de TD à savoir refaire

TD 4 : 1, 2, 3, 4, 5, 6 (exemple du cours), 8, 9, 12, 14, 16. Les exercices 10 et 15 seront corrigés lundi.