

Khôlle n° 6 semaine du 10 novembre

En souligné : démonstration de cours à savoir refaire.

1 Séries numériques

- Règle de D'Alembert pour les STP. Conséquence (nouvelles croissances comparées usuelles) : pour tout complexe a, $a^n = o(n!)$ et $n! = o(n^n)$.
- Produit de Cauchy, théorème admis. Savoir calculer le produit de Cauchy d'une série géométrique par elle-même pour en déduire la valeur de $\sum_{n=0}^{\infty} \frac{n+1}{2^n}$.
- Espace ℓ^1 des suites dont la série associée est ACV : c'est un sev de $\mathbb{C}^{\mathbb{N}}$, inégalité $\left|\sum_{n=0}^{\infty}u_n\right|\leqslant\sum_{n=0}^{\infty}|u_n|$. Notation $\|u\|_1$. Propriétés de $\|\cdot\|_1$: savoir démontrer $\|u\|_1=0\Longrightarrow u=0$.
- <u>Critère spécial des séries alternées</u> : encadrement de la somme par les sommes partielles et informations sur les restes.

2 Calcul différentiel sur \mathbb{R}^n (cours seulement)

- Fonctions partielles en un point d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$. Limite/continuité en un point d'une telle fonction. Si f est continue en $a = (a_1, \ldots, a_n)$, alors pour tout $k \in [\![1, n]\!]$, $f_{k,a}$ est continue en a_k , mais la réciproque est fausse. Dérivées partielles, classe \mathscr{C}^1 définie par la continuité des dérivées partielles.
- Théorème de l'approximation affine (<u>démonstration quand n=2</u>). Si f est de classe \mathscr{C}^1 , alors f est continue. Notion de fonction différentiable en un point. Différentielle de f au point a, notation $\mathrm{d} f_a$ ou $\mathrm{d} f(a)$. Il n'existe qu'une seule forme linéaire L sur \mathbb{R}^n telle que $f(a+h)-f(a)=\mathrm{L}(h)+o(\|h\|)$. Exemples de base : fonction constante, restriction d'une forme linéaire, et cas n=1. Propriétés calculatoires : d est linéaire, $\mathrm{d}(fg)_a$ et $\mathrm{d}\left(\frac{f}{g}\right)_a$ si $g(a)\neq 0$.
- Notions de forme différentielle de degré 1, écriture $P_1 dx_1 + ... + P_n dx_n$, formes (totales) exactes. Notation « δ » pour les 1-formes non exactes.
- Dérivée d'une composée : $\frac{\mathrm{d}}{\mathrm{d}t}f(x_1(t),\ldots,x_n(t))$ (chain rule 1), dérivées partielles de f^* : $(u,v)\mapsto f(x(u,v),y(u,v))$ (chain rule 2). Savoir expliquer l'écriture symbolique $\frac{\partial f}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial u}$. Écriture matricielle avec la jacobienne. Déterminant jacobien, exemple des coordonnées polaires.
- Il existe un seul vecteur, noté $\overrightarrow{\operatorname{grad}} f_a$ ou $\overrightarrow{\nabla} f(a)$ qui vérifie $\forall h \in \mathbb{R}^n$, $\mathrm{d} f_a(h) = \langle \overrightarrow{\operatorname{grad}} f_a, h \rangle$. Expression du gradient dans une BON de \mathbb{R}^n , cas de la base canonique. Expression du gradient « en polaires ». Chain rule 1 s'écrit aussi $(f \circ \gamma)'(t) = \langle \overrightarrow{\operatorname{grad}} f_{\gamma(t)}, \gamma'(t) \rangle$ ou encore $\mathrm{d} f_{\gamma(t)}(\gamma'(t))$.

3 Exercices de TD à savoir refaire

TD 3 : 4 (sauf la dernière série), 5, 6, 7, 13. Les exercices 14 et 17 seront corrigés lundi.