



# Devoir libre n° 1 pour le lundi 3 novembre

Une copie impeccable est exigée:

- propreté, lisibilité;
- orthographe, grammaire, syntaxe;
- résultats soulignés ou encadrés.

Une partie du DS n° 2 comportera des questions sur ce devoir : cherchez-le avec soin.

#### Partie 1

Du calcul

1. Pour tout n dans  $\mathbb{N}^*$ , on pose

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}.$$

Si  $n \ge 2$ , simplifier le plus possible  $u_n - u_{n-1}$ .

- 2. On note f la fonction  $x \mapsto e^{-\frac{1}{x}}$ .
  - (a) Donner la plus grande partie de  $\mathbb{R}$  sur laquelle f est définie.
  - (b) Déterminer la limite de f en  $0^+$  et en  $0^-$ .
  - (c) Justifier que f est de classe  $\mathscr{C}^{\infty}$  sur son ensemble de définition.
  - (d) Expliciter f' et f''.
  - (e) Démontrer par récurrence que pour tout entier non nul n, il existe une fonction rationnelle  $\Phi_n$  telle que

$$\forall x \in \mathbb{R}_+^*, \quad f^{(n)}(x) = \Phi_n(x) e^{-\frac{1}{x}}.$$

- 3. Résoudre les équations différentielles proposées, en précisant l'intervalle de définition.
  - (a) y'(x) = xy(x).
  - (b) y(x) = xy'(x).
  - (c) y'(x) + xy(x) = 1.
  - (d) y'' + y' + y = 0 (forme complexe et forme réelle).
  - (e) y'' + y' + y = 1 (forme complexe et forme réelle).
- 4. Faire des fiches (manuscrites!) sur les développements limités usuels. Les réviser chaque jour.
  - (a) Donner le développement limité en 0 à l'ordre 3 de  $\ln(1 + \sin(x))$ .
  - (b) Donner le développement limité en 0 à l'ordre 3 de  $\sqrt{3 + \cos(x)}$ .
  - (c) Donner le développement limité en 0 à l'ordre 3 de  $\frac{x-\sin(x)}{1-\cos(x)}$

# Partie 2

Les intégrales de Wallis et la formule de Stirling

Pour tout entier naturel n, on pose

$$W_n = \int_0^{\frac{\pi}{2}} \cos^n(x) \, \mathrm{d}x.$$

- 1. Montrer que la suite  $(W_n)_{n\in\mathbb{N}}$  est décroissante.
- 2. À l'aide d'une intégration par parties, montrer que

$$\forall n \in \mathbb{N}, \quad \mathbf{W}_{n+2} = \frac{n+1}{n+2} \mathbf{W}_n.$$

- 3. En déduire que la suite  $\Big((n+1)\mathbf{W}_{n+1}\mathbf{W}_n\Big)_{n\in\mathbb{N}}$  est constante, et trouver sa valeur.
- 4. Déduire de la question précédente que  $\forall n \in \mathbb{N}, W_n > 0$ .
- 5. Grâce à un produit télescopique, démontrer que

$$\forall p \in \mathbb{N}, \quad W_{2p} = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2}.$$

Donner alors une expression de  $W_{2p+1}$  quel que soit l'entier p.

6. Prouver que pour tout n dans  $\mathbb{N}$ ,

$$1 - \frac{1}{n+2} \leqslant \frac{W_{n+1}}{W_n} \leqslant 1$$

et en déduire que  $W_n \underset{n \to +\infty}{\sim} W_{n+1}$ .

- 7. Montrer finalement la formule de Wallis :  $\mathbb{W}_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$ .
- 8. On a montré dans le cours du chapitre 3 qu'il existait une constante K telle que  $n! \sim K\sqrt{n} \left(\frac{n}{e}\right)^n$ . Déterminer la valeur de K grâce à tout ce qui précède.

2

#### Partie 3

Seulement pour ceux voulant passer les écrits de concours

### Concours E3A (extrait : exercice 1 sur un sujet en comportant 4) – filière PSI

Dans tout l'exercice, on identifie  $\mathbb{R}[X]$  à l'ensemble des fonctions polynomiales.

On note & l'espace vectoriel réel des fonctions continues sur R, à valeurs dans R.

Pour tout élément f de  $\mathcal{E}$ , on note U(f) l'application de  $\mathbb{R}$  dans  $\mathbb{R}$  définie par

$$\forall x \in \mathbb{R}, \quad U(f)(x) = \int_{x-1}^{x} f(t) dt.$$

1. Soit T un réel strictement positif et f un élément  $\mathscr E$  qui est T-périodique. Montrer que

$$\forall a \in \mathbb{R}, \quad \int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt.$$

2. On suppose de plus dans cette question que f est dérivable sur  $\mathbb{R}$ .

Démontrer que si f est T-périodique, il en est de même pour f'.

Montrer que la réciproque est fausse.

- 3. Montrer que la fonction U(f) est de classe  $\mathscr{C}^1$  sur  $\mathbb{R}$  et calculer sa dérivée.
- 4. Montrer que l'application U est un endomorphisme de E.
- 5. Soit n dans  $\mathbb{N}^*$ . On pose  $E_n = \mathbb{R}_n[X]$  et  $\mathscr{B}_n = (1, X, \dots, X^n)$ .
  - (a) Montrer que la restriction de U à  $E_n$  définit un endomorphisme  $U_n$  de  $E_n$ .
  - (b) Écrire la matrice de  $U_n$  dans la base  $\mathcal{B}_n$ .
  - (c) L'endomorphisme  $U_n$  est-il bijectif?
- 6. Soit f dans  $\mathscr{E}$ . Justifier que si  $f \in \text{Ker}(U)$ , alors

$$(i) \int_0^1 f(t) \, \mathrm{d}t = 0$$

 $(i) \int_0^1 f(t) dt = 0;$  (ii) f est périodique de période 1.

- 7. A-t-on Ker(U) =  $\left\{ f \in \mathcal{E} \mid \int_0^1 f(t) dt = 0 \land \forall x \in \mathbb{R}, f(x+1) = f(x) \right\}$ ?
- 8. Donner explicitement une fonction non nulle f appartenant à Ker(U), et en donner une représentation graphique sur l'intervalle [-1, 2].

3

- 9. L'endomorphisme U est-il surjectif?
- 10. Soit a un réel non nul et  $f_a$  la fonction  $t \mapsto e^{at}$ , définie sur  $\mathbb{R}$ .
  - (a) Déterminer  $U(f_a)$ .
  - (b) Dresser le tableau des variations de la fonction réelle  $x \mapsto \frac{e^x 1}{x}$ .
  - (c) Montrer alors que tout réel  $\lambda$  strictement positif,  $Ker(U \lambda Id_{\mathscr{E}}) \neq \{0\}$ .