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Περὶ παντός, ὦ παῖ, μία ἀρχὴ τοῖς μέλλουσι καλῶς βουλεύεσθαι ·

εἰδέναι δεῖ περὶ οὗ ἂν ᾖ ἡ βουλή, ἢ παντὸς ἁρματάνειν ἀνάγκη.

Πλατῶν

[Péri pantoss, ô pai, mia arkhê toïs mélloussi kalôs bouleuesthaï :
eïdénaï deï hou ann ê hê boulê, ê pantoss hamartaneïn anankê].

En toute chose, mon enfant, il n’y a qu’un commencement pour ceux qui s’apprêtent à bien délibérer :
c’est de savoir de quoi on délibère, sans quoi on se trompe nécessairement sur tout.

Platon (428-348 av. J.-C.), Phèdre [237 c]

Martin Kuppe, Mathematisten (2014)
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Des fonctions vectorielles et des équations diffé-
rentielles linéaires 1

✓ Savoir définir la continuité et la dérivabilité d’une
fonction de R dans Rn.

✓ Avoir compris le rôle des fonctions composantes
pour traduire la continuité ou la dérivabilité d’une
fonction de R dans Rn.

✓ Savoir dériver γ ◦ λ, t 7→ λ(t) · x, L ◦ γ (avec L
linéaire), B(γ1,γ2) (avec B bilinéaire). En particu-
lier, savoir dériver sans hésiter t 7→ ⟨γ1(t),γ2(t)⟩ et
t 7→ γ1(t) ∧ γ2(t).

✓ Avoir compris ce que cache le symbole
∫

C+

−→
F ·
−→
dℓ

représentant une circulation sur une « courbe orien-
tée » C+.

✓ Savoir reconnaître une équation différentielle qui
n’est pas linéaire.

✓ Maîtriser le théorème central : celui de Cauchy-
Lipschitz dans sa version linéaire. Avoir compris
qu’il donne la dimension de l’espace des solutions
de l’équation homogène associée.

✓ Savoir parfaitement résoudre une EDL1 quelconque
ou une EDL2 à coefficients constants.

✓ Savoir mettre en place une technique de variation
de la constante pour une EDL1 (pour les EDL2,
rien n’est exigible).

♠ Oublier l’orientation sur une courbe sur laquelle on
veut calculer une circulation : le signe en dépend !

♠ Faire une variation de la constante pour des EDL
homogènes : ce n’est pas du tout l’objet de cette
technique.

♠ Faire une variation de la constante pour des EDL
à coefficients constants. C’est totalement inutile car
on peut trouver une solution particulière constante !

♠ Essayer d’écrire l’équation caractéristique d’une
EDL scalaire quand celle-ci n’est pas à coefficients
constants : à quoi peut bien ressembler les racines ?
Ce serait des fonctions ?

1.1 Fonctions vectorielles

Exercice 1 (théorème du moment cinétique). Si M est un point mobile de masse constante m et si A
est un point fixe, le vecteur

−→
L A =

−−→
AM ∧

(
md

−−→
AM
dt

)
est appelé moment cinétique 1 de M par rapport au

point A.

1. Montrer que l’application
−→
L ainsi définie est un torseur, c’est-à-dire vérifie la relation dite de

Varignon (aussi appelée règle de Babar par les petits rigolos) :

∀A, ∀B,
−→
L B =

−→
L A +

−→
BA ∧

−→
R ,

où
−→
R est un vecteur indépendant de A et B que l’on précisera.

2. Établir le théorème du moment cinétique : la dérivée (par rapport au temps) du moment ciné-
tique de M par rapport à A vaut

∑−−→
AM ∧

−→
F ext.

Exercice 2 1. Soit θ : R→ R une fonction dérivable telle que θ(0) = 0. On pose

M(t) =

Å
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

ã
pour tout réel t. Calculer M′(0).

2. Plus généralement, si n ∈ N∗, on considère M : R → Mn(R) dérivable telle que M(0) = In et
M(t)⊺ ×M(t) = In pour tout réel t. Montrer que M′(0) est une matrice antisymétrique.

1. En anglais on parle de angular momentum c’est-à-dire « moment angulaire ».
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Exercice 3 Soit γ : [a, b]→ Rn un arc paramétré de classe C1. On pose

L(γ) =

∫ b

a
∥γ′(t)∥ dt.

1. Soit A et B dans Rn. Calculer L(γ) si γ = t 7→ (1− t)A + tB (t ∈ [0, 1]).
2. Si R, p > 0, déterminer L(γ) quand γ = t 7→ (R cos(ωt),Rsin(ωt), pt) (t ∈ [0, τ]). Que retrouve-

t-on si p = 0 et τ = 2π ?
3. Soit R > 0. Calculer L(γ) quand γ = t 7→ (R cos3(t),Rsin3(t)) (t ∈ [0, 2π]).

Au vu des premières questions, il semblerait que L(γ) s’interprète comme la longueur du support de γ.

1.2 Calcul de circulations

Exercice 4 L’espace est muni d’un repère orthonormé direct. Soit
−→
F le champ de vecteurs qui à tout

point M(x, y, z) associe le vecteur de coordonnées (xy, 0, x). Soit aussi les points A(3, 0, 0), B(0, 3, 0) et
C(0, 0, 6). Calculer la circulation de

−→
F le long du triangle ABC (avec l’orientation A→ B→ C).

Exercice 5 Si R > 0, on considère le cercle C+
R de centre O de rayon R, parcouru une seule fois dans

le sens direct. Soit alors le champ de vecteurs
−→
F définie sur R2 \ {(0, 0)} par

−→
F (M) =

1

OM2

−−→
OM (noté

−→r
r2

ou
−→er
r

en Physique).

Calculer
∮

C+
R

−→
F ·
−→
dℓ. Même question avec le champ de vecteurs

−→
G(M) = 1

OM2 (−yM−→ex + xM
−→ey).

1.3 Équations différentielles

Exercice 6 Parmi les équations fonctionnelles suivantes, lesquelles sont des équations différentielles ?
Parmi celles-ci, lesquelles sont linéaires (on distinguera les homogènes) ?
1. y′(t) = cos(t)y(t) + sin(t). 2. y′(t) = cos(y(t)) + sin(t). 3. y′(t) = y−1(t).
4. y′′(t) + ty′(t) + t2y(t) = 0. 5. y′′(t) + y′(t) + y(t)2 = 0. 6. y′(t) = y′′(t).
7. y′(t) = 1

y(t) . 8. y′(t) = 1
t y(t). 9. y′(t) = y(1t ).

Exercice 7 On considère l’équation différentielle bien connue y′(t) = y(t), mais où cette fois l’inconnue
est une fonction dérivable sur R∗ à valeurs dans R. Montrer que l’ensemble des solutions est un R-espace
vectoriel de dimension 2, et expliquer en quoi cela ne contredit pas le théorème de Cauchy-Lipschitz
linéaire.

Exercice 8 Résoudre y′′′ + y′′ − 6y′ = 0.

Exercice 9 Résoudre y′′(x)− 3y′(x) + 2y(x) = ex.

Exercice 10 Résoudre grâce à la méthode de variation de la constante :

x(1 + x2)y′(x)− (x2 − 1)y(x) = −2x.

Exercice 11 Résoudre x2y′′(x) + 4xy′(x)− (x2 − 2)y(x) = 0 où l’inconnue est définie sur ]0,+∞[.
Indication : on pourra considérer la fonction x 7→ x2y(x).

Exercice 12 (une équation différentielle non linéaire). Une étude sur le comportement d’organismes
vivants placés dans une enceinte close dont le milieu nutritif est renouvelé en permanence a conduit à
modéliser l’évolution de la population par une fonction N : R+ → R telle que

(E) : N′ = 2N− 0, 0045N2.

Si t ⩾ 0 est le temps (en heures), la partie entière de N(t) est le nombre d’individus présents dans
l’enceinte à l’instant t et on donne N(0) = 1 000.
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1. On suppose que N ne s’annule pas sur R+. Montrer que N est solution de (E) si et seulement si
1
N est solution d’une équation différentielle linéaire (E′).

2. Résoudre (E′) puis (E) et déterminer la fonction N de l’énoncé.

3. Étudier les variations de N.

4. Déterminer l’instant t0 où la population aura diminué de moitié.

Exercice 13 (CCINP). On considère l’équation différentielle non normalisée suivante :

(E) : |x|y′(x) + y(x) = x3,

où y est à valeurs dans R.

1. Résoudre (E) sur les intervalles R∗
+ et R∗

−.

2. Résoudre (E) sur R tout entier (problème de raccordement des solutions).

Exercice 14 (CCINP). Trouver toutes les fonctions f et g continues sur R vérifiant

∀x ∈ R,
ï
∫ x

0
f(t) dt = x− 1 + g(x) ∧

∫ x

0
g(t) dt = x− 1 + f(x)

ò
.

Exercice 15 (CCINP). On souhaite résoudre le système différentiel
ß

x′(t) = cos(t)x(t)− sin(t)y(t),
y′(t) = sin(t)x(t) + cos(t)y(t).

Si (x, y) est un couple de solutions, montrer que x + iy vérifie une équation différentielle que l’on ré-
soudra. En déduire toutes les solutions de ce système.

Exercice 16 (CCINP). Soit le système différentiel linéaire suivant :
x′ = x+ y + z,
y′ = x− y + z,
z′ = x+ y − z,

avec les conditions initiales


x(0) = 3,
y(0) = 1,
z(0) = 1.

1. On suppose qu’il existe une solution, c’est-à-dire trois fonctions x, y, z dérivables vérifiant ce
système. Montrer que les points Mt de coordonnées (x(t), y(t), z(t)) (quand t décrit R) appar-
tiennent tous à un même plan P dont on donnera une équation.

2. Trouver x, y et z.

Exercice 17 (CCINP). On souhaite résoudre l’équation fonctionnelle

(E) : ∀t ∈ R∗
+, f ′(t) = f

Å
1

t

ã
,

où l’inconnue f est une fonction de classe C1 sur R∗
+ à valeurs dans C.

1. Si f est solution, montrer qu’elle est de classe C2 et vérifie une certaine EDL2 (E′).

2. Chercher les complexes α tels que t 7→ tα soit solution de (E′), puis résoudre (E).

Exercice 18 (classique). On considère une fonction f : R→ R qui est additive, c’est-à-dire telle que

∀(x, y) ∈ R2, f(x+ y) = f(x) + f(y).

1. Soit a un réel. Montrer que l’application linéaire x 7→ ax est additive.

2. Réciproquement, considérons une fonction additive f : R → R. On suppose de plus que f est
dérivable sur R. Montrer que f est linéaire.

3. En déduire toutes les fonctions dérivables g : R → R telles que g(x + y) = g(x)g(y) pour tous
réels x et y.

4. On ne suppose plus f dérivable.
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(a) Démontrer que f(0) = 0, puis qu’il existe un réel a telle que f(n) = an pour tout entier n.
Montrer alors que f(x) = ax pour tout x dans Q.

(b) Si maintenant f est supposée continue, démontrer que ∀x ∈ R, f(x) = ax, c’est-à-dire que f
est linéaire.

(c) (∗) On voit R comme un Q-espace vectoriel et on admet que Q, qui en est un sous-espace
vectoriel, admet un supplémentaire I. Construire une application f : R → R additive, mais
pas linéaire.

Exercice 19 (Centrale, extrait). Soit f une solution non identiquement nulle d’une EDL2 homogène.
Montrer que les zéros de f sont isolés, c’est-à-dire si t0 est tel que f(t0) = 0, alors il existe ε > 0 tel
que f ne s’annule pas sur ]t0 − ε, t0 + ε[.

Exercice 20 (Centrale). Soit f : R → R une application continue et 1-périodique. On considère
l’équation différentielle

(E) : x′′(t) + f(t)x(t) = 0

1. Rappeler pourquoi on peut affirmer l’existence deux solutions u et v de (E) qui ne soient pas
proportionnelles. On pose alors, pour tout réel t,

M(t) =

Å
u(t) u′(t)
v(t) v′(t)

ã
.

2. Montrer qu’il existe A dans M2(R) telle que M(t+ 1) = A×M(t) pour tout réel t.

3. Si w(t) désigne detM(t), établir que w est une fonction constante, et en déduire detA.

Exercice 21 (∗) On se propose de mettre en évidence une propriété géométrique des courbes intégrales
d’une EDL1. Soit I un intervalle de R et soit (E) l’équation différentielle

(E) : a(x)y′(x) + b(x)y(x) = c(x)

où les fonctions a, b et c sont continues de I dans R, a ne s’annulant pas. Soit aussi x0 dans I.

Montrer que les tangentes aux courbes intégrales aux points d’abscisse x0 sont ou bien concourantes
ou bien toutes parallèles.

Sur les graphiques ci-dessous on a représenté des courbes intégrales de l’équation différentielle
y′(x) = (1 − x2)y(x) + cos(x). On constate que les tangentes en x0 = −1 sont toutes parallèles alors
que celles en x0 = 0.5, par exemple, sont concourantes.
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De l’Algèbre linéaire (partie 1) 2
✓ Savoir montrer qu’une partie d’un espace vectoriel

en est un sous-espace vectoriel.

✓ Savoir montrer que des sous-espaces sont en somme
directe.

✓ Savoir montrer qu’une famille de vecteurs est libre,
liée, génératrice.

✓ Savoir montrer qu’une application entre deux es-
paces vectoriels est linéaire. Savoir déterminer son
noyau, son image (par exemple en en donnant une
base).

✓ Savoir expliciter la matrice d’une application li-
néaire dans des bases.

✓ Savoir expliquer comment est définie la trace d’un
endomorphisme en dimension finie.

✓ Maîtriser tout ce qui concerne les changements de
bases : X = PX′, M = PM′P−1, etc.

♠ Croire que trois sous-espaces F1,F2,F3 sont en
somme directe si et seulement si leurs intersections
2 à 2 sont réduites à {0}.

♠ Confondre « être en somme directe » avec « être
supplémentaires ».

♠ Écrire « on a E ⊕ F » pour dire « E et F sont
en somme directe » : cela a autant de sens que
d’écrire « on a 1 + 2 ». L’écriture correcte est
« E + F = E⊕ F ».

♠ Vérifier que f(0) = 0 pour montrer que f est li-
néaire : c’est automatique, nul besoin de le vérifier !
En revanche, si f(0) ̸= 0, on peut en conclure que
f n’est pas linéaire.

♠ Croire que la dimension d’un produit de sous-
espaces est le produit des dimensions d’iceux. Bien
que tentante, cette formule est fausse (penser à
R2 = R×R).

2.1 Sous-espaces vectoriels

Exercice 1 Le sous-ensemble {(x, y, z) ∈ R3 | x2+ y2− z2 = 0} est-il un sous-espace vectoriel de R3 ?
Et pour {(x, y, z) ∈ R3 | x2 + y2 + z2 = 0} ?

Exercice 2 1. DansR3, si a, b, c sont des réels non tous nuls, prouver que l’équation ax+by+cz = 0
ne peut jamais représenter une droite. Et si a = b = c = 0 ?

2. Que représente l’équation y = 2x dans R3 ? Et l’équation x2 + y2 = 0 ?

Exercice 3 Donner une base du sous-espace vectoriel de R4 défini par le système d’équations suivant :ß
x+ 2y − z + 3t = 0,

x− y + z + t = 0.
Faire de même pour celui d’équation x+ y − z + 2t = 0.

Exercice 4 Soit E un K-espace vectoriel et F,G des sous-espaces vectoriels de E tels que E = F ∪G.
Montrer que F = E ou G = E.

Exercice 5 Soit E un K-espace vectoriel et F un sous-espace vectoriel de E, distinct de {0E} et de E.
Montrer que (E \ F) ∪ {0E} n’est pas un sous-espace vectoriel de E.

Exercice 6 Soit G,F1 et F2 des sous-espaces vectoriels d’un même espace vectoriel. A-t-on toujours
G ∩ (F1 + F2) = (G ∩ F1) + (G ∩ F2) ?

Exercice 7 Dans le R-espace vectoriel E des fonctions dérivables sur R à valeurs dans R, on pose
Z1 = {f ∈ E | f(0) = f ′(0) = 0} et on note P1 l’ensemble des fonctions affines.

1. Montrer que Z1 et P1 sont des sous-espaces vectoriels de E et que E = Z1 ⊕ P1.

2. Si f ∈ E, interpréter graphiquement la projection de f sur P1.

Exercice 8 Dans l’espace E = F(R,R) on note C l’ensemble des fonctions constantes, F+ celui des
fonctions nulles sur R+ et F− celui des fonctions nulles sur R−. Montrer que C,F+,F− sont des sous-
espaces vectoriels de E et que E = C⊕ F+ ⊕ F−.
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Exercice 9 (Centrale-Supélec, 2022, extrait). Soit F un sous-espace vectoriel d’un espace vectoriel E
(pas forcément de dimension finie). Si F admet deux supplémentaires G1 et G2, démontrer que G1 et
G2 sont isomorphes.

Remarque. Ainsi, si F admet un supplémentaire de dimension finie p, tous ses autres supplémen-
taires sont aussi de dimension p. On dit que p est la codimension de F, on la note codim(F).

Exercice 10 (Commutant d’un endomorphisme nilpotent, CCINP). Soit E un espace vectoriel non nul
de dimension finie n, et u dans L(E). On suppose que u est nilpotent d’indice n, c’est-à-dire un = 0 et
un−1 ̸= 0.

1. Montrer qu’il existe x dans E tel que (x, u(x), u2(x), . . . , un−1(x)) soit une base, notée Bx de E.

2. Déterminer la matrice de u dans la base Bx.

3. On note Γu l’ensemble des endomorphismes de E qui commutent avec u.

(a) Montrer que Γu est un sous-espace vectoriel de L(E).
(b) Montrer que Γu = Vect(IdE, u, u2, . . . , un−1) et que dimΓu = n.

2.2 Familles libres, génératrices

Exercice 11 Expliquer pourquoi l’ensemble R peut être muni d’une structure de Q-espace vectoriel.
C’est cette structure qu’on utilise dans cet exercice.

1. Montrer que (1,
√
2) est une famille libre. Et pour (1,

√
2,
√
3) ?

2. On note p1, p2, . . . la suite strictement croissante des nombres premiers. Montrer que (ln(pn))n∈N∗

est libre. Qu’en déduire sur la dimension de R vu comme Q-espace vectoriel ?

Exercice 12 Dans l’espace F(R,R), montrer que la famille (cos, sin, ch, sh) est libre.

Exercice 13 1. Soit (P1, . . . ,Pn) une famille de polynômes non nuls de degrés tous distincts.
Montrer que cette famille est libre.

2. Dans R2[X], montrer que (X2,X2 + X,X2 + 1) est libre, bien que constituée de polynômes de
même de degré. Est-ce une base de R2[X] ?

3. Soit n un entier naturel. Si (Pi)i∈I est une base de Rn[X], pourquoi existe-t-il i dans I tel que
deg(Pi) = n ?

4. Soit a dans K. Montrer que ((X− a)n)n∈N est une base de K[X] et donner les coordonnées d’un
polynôme P dans cette base.

Exercice 14 (Ultra classique). Ici, I désigne un intervalle de longueur non nulle. Pour tout complexe
a on note fa : I→ C la fonction définie par fa(x) = eax pour tout réel x. Montrer que la famille (fa)a∈C
est libre. Indication : utiliser la dérivation et une récurrence.

Exercice 15 (Centrale-Supélec, extrait). Pour tout réel a on note fa : R→ R définie par fa(x) = |x−a|
pour tout réel x. Montrer que la famille (fa)a∈R est libre. Indication : où n’est pas dérivable fa ?

2.3 Applications linéaires, noyau et image

Exercice 16 Donner une base du noyau et de l’image des applications linéaires canoniquement asso-
ciées aux matrices suivantes : Å

1 2 3
4 5 6

ã Ñ
1 0 1
−1 1 0
2 3 5

é
.
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Exercice 17 (matrice antidiagonale). Soit n dans N∗ et a1, . . . , an ∈ C. Grâce aux endomorphismes
associés, calculer A2 si A est la matrice suivante.

0 an

. .
.

a1 0

 .

Exercice 18 Soit n dans N∗ et F,G,H des sev de Rn tels que dimF+dimG+dimH > 2n. Démontrer
que F ∩G ∩H ̸= {0}. Indication : considérer f(x, y, z) 7→ (x− z, y − z).

Exercice 19 (E3A). Soit E le R-espace vectoriel des fonctions continues de [0, 1] dans R. Pour tout
f dans E, on considère la fonction T(f) définie sur [0, 1] par

∀x ∈ [0, 1], T(f)(x) =

∫ x

0
f(t) dt.

1. Montrer que T est un endomorphisme de E.
2. Si f ∈ E, justifier que T(f) est dérivable et calculer T(f)′.
3. Si f est de classe C1, que vaut T(f ′) ?
4. Déterminer Ker(T) et Im(T).

Exercice 20 Soit E un K-espace vectoriel de dimension finie n > 0. Soit f et g dans L(E) tels que
E = Ker(f) + Ker(g) = Im(f) + Im(g). Montrer que ces sommes sont directes.

Exercice 21 (Centrale-Supélec 2022). Soit E un espace vectoriel de dimension finie et V un sous-espace
vectoriel de L(E) tel que V \ {0L(E)} ⊂ GL(E). Démontrer que dimV ⩽ dimE.

Exercice 22 (D’après Arts & Métiers). Soit n un entier au moins égal à 2. On note Ψ l’application
définie sur Mn(C) par Ψ(M) = M− tr(M)In.

1. Montrer que Ψ est un automorphisme de Mn(C).
2. Montrer que Ψ ◦Ψ est une combinaison linéaire de Ψ et de IdMn(C). En déduire Ψ−1.

Exercice 23 Soit I un intervalle de R de longueur non nulle et Φ :
C∞(I,R) −→ C∞(I,R)

f 7−→ f ′′.
Montrer que Φ est un endomorphisme surjectif. Est-il pour autant injectif ?

Exercice 24 Soit E un K-espace vectoriel quelconque et f dans L(E).
1. Montrer que Ker(f) ∩ Im(f) = {0E} si et seulement si Ker(f) = Ker(f2).
2. Montrer que Ker(f) + Im(f) = E si et seulement si Im(f) = Im(f2).
3. On suppose ici que dim(E) <∞. Montrer que Ker(f) = Ker(f2)⇐⇒ Im(f) = Im(f2).

Exercice 25 (matrices magiques). Une matrice carrée M est dite magique quand on obtient la même
valeur en sommant une ligne quelconque, une colonne quelconque et une diagonale quelconque. On note
alors s(M) cette valeur commune.

1. Montrer que l’ensemble C3 des matrices magiques 3× 3 est un sous-espace vectoriel de M3(R)
et que s est une forme linéaire sur C3.

2. Montrer que C3 = Ker(s)⊕VectR(J) où J est la matrice ne contenant que des 1.
3. Prouver que Ker(s) = (Ker(s)∩S3(R))⊕ (C3 ∩A3(R)) et en déduire une base de C3 composée

de matrices symétriques ou antisymétriques.

Exercice 26 Soit n dans N∗ et r dans J0, nK. L’ensemble des matrices de rang r est-il un sous-espace
vectoriel de Mn(K) ? Et celui des matrices de rang inférieur ou égal à r ?
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Exercice 27 (noyaux itérés, décomposition de Fitting, Centrale-Supélec). Soit E un K-espace vectoriel
quelconque, et soit f dans L(E). Pour tout entier k, on pose

Nk = Ker(fk) et Ik = Im(fk).

1. Montrer que (Nk)k∈N est une suite croissante pour l’inclusion, et que (Ik)k∈N est une suite
décroissante.

2. Justifier que
⋃

k∈N
Nk et

⋂
k∈N

Ik sont des sous-espaces vectoriels de E, stables par f : on les note

respectivement N et C. On dit que N est le nilespace de f et que C en est le cœur.

3. Déterminer N et C lorsque f ∈ GL(E).

4. Maintenant, E est supposé être de dimension finie non nulle n.

(a) Justifier l’existence d’un entier k tel que Nk = Nk+1 : on note r le plus petit d’entre eux.
Montrer alors que pour tout k ⩾ r, Nk = Nr.

(b) Prouver alors que pour tout k ⩾ r, Ik = Ir.
(c) Montrer que N⊕ C= E (décomposition de Fitting).

(d) Établir l’existence d’une base de E dans laquelle la matrice de f est
Å

A O

O B

ã
avec A

nilpotente et B inversible.

2.4 Matrices et applications linéaires

Exercice 28 (endomorphismes cycliques). Soit E un K-espace vectoriel de dimension finie n, non
nulle. Un endomorphisme u de E est dit cyclique s’il existe un vecteur x de E telle que la famille
(x, u(x), . . . , un−1(x)) est une base de E. Un tel vecteur est qualifié de totalisateur pour u.

Montrer que u est un endomorphisme cyclique de E si et seulement s’il existe une base de E dans
laquelle la matrice de u est de la forme

0 a0

1 0 0 a1

1
. . .

...
. . . 0

...

0 1 an−1


où a0, . . . , an−1 sont des scalaires.

Exercice 29 Soit D l’endomorphisme de dérivation de R3[X].

1. Donner sa matrice dans la base canonique (1,X,X2,X3).

2. Donner sa matrice dans la base de Hilbert (1,X, 12X(X− 1), 16X(X− 1)(X− 2)).

3. Si M est une matrice représentant D dans une base quelconque. Que vaut M4 ?

Exercice 30 (matrices nilpotentes).

1. Soit M nilpotente. Justifier l’existence d’un unique entier r tel que Mr = 0 et Mr−1 ̸= 0. Cet
entier s’appelle l’indice de nilpotence de M.

2. Puisque Mr−1 ̸= 0, il existe une colonne X telle que Mr−1X ̸= 0. Montrer alors que la famille
(X,MX, . . . ,Mr−1X) est libre et en déduire que r ⩽ n.

3. Démontrer que toute matrice triangulaire supérieure dont la diagonale est nulle est nilpotente.

4. Donner un exemple de matrice 2× 2 nilpotente mais pas triangulaire.

5. Soit M dans M2(K) telle que tr(M) = det(M) = 0. Montrer que M est nilpotente.

11



6. Montrer que la somme de deux matrices nilpotentes n’est pas toujours nilpotente.

7. Soit M et N dans Mn(K), nilpotentes. On suppose que MN = NM. Montrer que M + N est
nilpotente.

Exercice 31 (Mines-Ponts). Soit n un entier au moins égal à 2 et F un sous-espace vectoriel de Mn(R)
contenant toutes les matrices nilpotentes. Démontrer que F contient au moins une matrices inversible.

Exercice 32 On note D l’endomorphisme de dérivation de l’espace C∞(R,R) et on note F l’espace
VectR(cos, sin). Montrer que F est stable par D, puis déterminer la matrice de l’endomorphisme induit
par D sur F dans la base (cos, sin).

Exercice 33 (Centrale-Supélec, extrait). Si D est une matrice diagonale, démontrer que

Ker(D) = Ker(D2).

En déduire que Im(D) = Im(D2).

Exercice 34 (matrices qui commutent).

1. Soit D une matrice diagonale dont tous les coefficients sont deux à deux distincts. Soit M une
matrice carrée commutant avec D (c’est-à-dire MD = DM). Montrer que M est diagonale.

2. Soit M une matrice carrée commutant avec toutes les matrices carrées de même format. Montrer
que M est proportionnelle à la matrice identité.

Exercice 35 (Ultra classique). Soit n un entier naturel non nul et A dans Mn(K).

1. Montrer que rg(A) = 1 si et seulement si A = CL avec C une matrice colonne et L une matrice
ligne toutes deux non nulles.

2. En déduire qu’il existe un scalaire λ tel que A2 = λA et préciser la valeur de λ.

Exercice 36 1. Si E est un C-espace vectoriel, rappeler pourquoi on peut le voir comme un R-
espace vectoriel. Montrer que l’application J : E → E définie par J(x) = ix est R-linéaire et
vérifie J2 = −IdE. Est-elle C-linéaire ?

2. Réciproquement, soit E un R-espace vectoriel et soit J ∈ L(E) tel que J2 = −IdE. Construire
une structure de C-espace vectoriel sur E. En déduire que dimR(E) est pair.

Exercice 37 (produit de Kronecker, Centrale-Supélec, écrits 2025). Soit n, p, q et r des entiers naturels
non nuls. Si A ∈Mn,p(K) et B ∈Mp,q(K), on définit la matrice A⊗ B de Mnq,pr(K) comme étanta1,1B . . . a1,nB

...
...

an,1B . . . an,nB

 .

1. Calculer A⊗ B si A =

Å
1 2 3
4 5 6

ã
et B =

Å
a b
c d

ã
.

2. Que vaut X⊗Y si X et Y sont deux matrices-colonnes ? Et si ce sont des matrices diagonales ?

3. Si A ∈Mn(K), comparer A⊗ In et In ⊗A.

4. Montrer que ⊗ est une application bilinéaire de Mn,p(K)×Mq,r(K) dans Mnq,pr(K).

5. Démontrer que (AA′) ⊗ (BB′) = (A ⊗ A′)(B ⊗ B′) si A,A′,B,B′ sont des matrices de formats
compatibles.

6. En déduire que si P et Q sont dans GLn(K), alors P⊗Q est inversible, et donner son inverse.

7. Application. On dit qu’une matrice est diagonalisable quand elle est carrée et semblable à une
matrice diagonale. Si A et B sont diagonalisables, démontrer que A⊗ B aussi.

12



Exercice 38 (le corps gauche quaternions). On pose (en l’honneur de Hamilton),

H =

ßÅ
u −v
v u

ã
: (u, v) ∈ C2

™
.

1. Montrer que H est un sous-R-espace vectoriel de M2(C), mais que ce n’est pas un sous-C-espace
vectoriel de M2(C). Donner dimRH.

2. On pose J =

Å
0 −1
1 0

ã
. Démontrer que pour toute matrice A de M2(C),

A ∈ H ⇐⇒ JAJ−1 = A.

3. En déduire que H est stable par ×, contient I2, et que tout élément non nul de H est inversible.

Dans la suite, si a ∈ R, on notera a en lieu et place de aI2.

4. Montrer que l’ensemble {a+ bJ : (a, b) ∈ R2}, que l’on notera CJ, est un sous-R-espace vectoriel
de H stable par × et que c’est un anneau isomorphe à C (i.e. il existe une application linéaire
bijective f : C→ CJ telle que ∀(a, b) ∈ C2, f(ab) = f(a)f(b) et f(1) = I2).

Remarque. L’ensemble H est donc presque un corps : la multiplication n’étant pas commuta-
tive, on dit que H est un corps gauche ( skew field en anglais). Le corps gauche des quaternions
sert en infographie pour transcrire efficacement des rotations dans l’espace exactement comme
les nombres complexes transcrivent les rotations du plan. La question 4 permet de voir H comme
une extension de C. La liste des ensembles de nombres s’agrandit donc :

N ⊂ Z ⊂ D ⊂ Q ⊂ R ⊂ C ⊂ H.

Notons que Z et D sont des anneaux mais pas des corps, et que N n’est pas un anneau.
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Des séries numériques 3
✓ Connaître le vocabulaire de base : série, sommes

partielles, sommes, reste, divergence grossière, etc.
✓ Maîtriser les suites/séries géométriques : condition

de convergence, valeur des sommes partielles et de
leur limite.

✓ Maîtriser les séries de Riemann, en particulier la
célèbre série harmonique

∑
1
n

qui diverge.
✓ Utiliser des équivalents pour trouver la nature (CV

ou DV) de séries à termes positifs (STP).
✓ Savoir mettre en place une comparaison série-

intégrale pour non seulement trouver la nature
de séries, mais aussi pour trouver des équivalents
simples des sommes partielles (si DV) ou des restes
(si CV).

✓ Savoir utiliser la comparaison aux séries de Rie-
mann, aussi appelée « règle du ×nα » : si

∑
un

est une série complexe telle que (nαun) est bornée
(par exemple si elle tend vers 0) et que α > 1, alors∑

un CVA.
✓ Avoir compris ce qu’est une série absolument

convergente, et qu’il n’est pas évident qu’une telle
série converge (c’est un théorème !).

✓ Avoir compris que le produit de Cauchy de deux sé-
ries

∑
an et

∑
bn est une troisième série

∑
cn, où

cn =
n∑

k=0

akbn−k. Connaître une condition suffisante

pour que
∑

cn converge, et connaître sa somme.
✓ Maîtriser le théorème spécial des séries alternées, et

ne pas se contenter du résultat de convergence : les
précisions sur le reste RN sont très utiles en pra-
tique.

✓ Savoir utiliser la règle de D’Alembert à bon escient.
✓ Connaître la formule de Stirling donnant un équi-

valent de n! (prononcer « factorielle n »).

♠ Confondre
∑

an et
∞∑

n=0

an.

♠ Confondre
2n∑
k=0

ak et
n∑

k=0

a2k.

♠ Se tromper sur l’expression du reste RN. C’est
∞∑

k=N+1

et non
∞∑

k=N

.

♠ Croire que le fait que un → 0 entraîne la conver-
gence de

∑
un : la série harmonique est le contre-

exemple incontournable.

♠ Séparer des sommes infinies en deux
∞∑

n=0

(an+bn) =

∞∑
n=0

an +
∞∑

n=0

bn : c’est faux en général.

♠ Oublier q ̸= 1 avant d’écrire
n∑

k=0

qk = 1−qn+1

1−q
.

♠ Oublier |q| < 1 avant d’écrire
∞∑

k=0

qk = 1
1−q

.

♠ Utiliser les équivalents sur des séries qui ne sont pas
à termes positifs : on peut tout à fait avoir un ∼ vn
avec

∑
un convergente et

∑
vn divergente.

♠ Penser que la convergence de
∑

an et
∑

bn suffit à
faire converger leur produit de Cauchy

∑
cn : c’est

faux (cf. exercices).

♠ Oublier de vérifier que an > 0 à partir d’un certain
rang avant d’appliquer la règle de D’Alembert.

♠ Appliquer la règle de D’Alembert à une série géo-
métrique : c’est un cercle vicieux, car on démontre
cette règle grâce aux séries géométriques !

♠ Ne pas connaître ses équivalents usuels : ln(1 + x),
ex − 1, cos(x)− 1 et Cie. Fatal !

3.1 Exercices de base

Exercice 1 (une preuve sans mots). Observer le dessin suivant.

Quelle série représente ce dessin ? Que semble valoir sa somme ? Démontrer cette conjecture.
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Exercice 2 Proposer une « preuve sans mots » de l’égalité
∞∑
n=1

1
3n = 1

2 .

Exercice 3 (le flocon de von Koch). F0 est un triangle équilatéral de côté 1. Pour chaque entier n, on
construit par récurrence une ligne brisée Fn de la façon suivante :

1. Montrer que la longueur de Fn tend vers +∞.
2. Montrer que l’aire contenue dans Fn tend vers une limite finie.

Exercice 4 Donner la nature des séries proposées.∑ n+ 2025

n(n+ 1)(n+ 2)
,
∑ ï

e−
Å
1 +

1

n

ãnò
,
∑ 2 · 4 · . . . · (2n)

nn
,
∑ 1

n
√
n!

,
∑ n!

nαn
(α ∈ R),

∑Å
n

n+ 1

ãn2

,
∑ cos(n)

n2
,
∑

ln

Å
cos

1

n

ã
,
∑

ln(n)− ln(n),
∑ ∫ πn

0

sin3(x)

1 + x
dx,

∑ ch(n)

ch(2n)
,
∑

( n
√
n+ 1− n

√
n),

∑
(1− e1/n),

∑ nn

en · n!
,
∑ nα lnn(n)

n!
(α ∈ R).

Exercice 5 Grâce à un développement limité à un ordre suffisant, établir la convergence de
∑

sin
Ä
(−1)n

n

ä
.

Expliquer pourquoi un simple équivalent ne peut justifier ce résultat.

Exercice 6 (CCINP). Étudier, grâce au lien suite-série, la nature de la suite (vn)n∈N∗ , où

∀n ∈ N∗, vn = 2
√
n−

n∑
k=1

1√
k
.

Exercice 7 Établir que
n∑

k=2

1
k ln(k) ∼n→∞

ln(ln(n)).

Exercice 8 On admet que
∞∑
n=1

1
n2 = π

2

6 . Déterminer les valeurs de
∞∑
n=0

1
(2n+1)2

et
∞∑
n=1

(−1)n+1

n2 .

Exercice 9 (CCINP). Montrer que
∞∑
n=0

(−8)n

(2n)! est un réel négatif.

Exercice 10 (autour du produit de Cauchy).

1. Expliquer pourquoi la série
∑ (−1)n√

n
est convergente. Montrer que le produit de Cauchy de cette

série par elle-même est une série divergente.
2. Soit q et r distincts dans C∗ tels que |q| < 1 et |r| < 1. Expliciter le produit de Cauchy de

∑
qn

par
∑

rn. Et si q = r ?

3. Grâce à un produit de Cauchy, déterminer
∞∑
n=0

n+1
2n .

Exercice 11 (règle de Cauchy). Soit
∑

un une série à termes positifs.
1. Si ( n

√
un)n∈N∗ possède une limite ℓ < 1, montrer que

∑
un converge.

2. Si ( n
√
un)n∈N∗ possède une limite ℓ > 1, montrer que

∑
un diverge.

3. Montrer que si ℓ = 1 on ne peut rien dire.
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3.2 Les grands classiques

Exercice 12 (Mines-Ponts).

1. Convergence et somme de
∑ n3

n! . Indication : (1,X,X(X− 1),X(X− 1)(X− 2)) est une base de
R3[X].

2. Plus généralement, pour tout entier p, montrer que la somme de
∑ np

n! est un multiple de e.

Exercice 13 (la constante d’Euler). On pose Hn = 1 + 1
2 + . . .+ 1

n pour chaque n dans N∗.

1. Grâce au lien suite-série, prouver que Hn − ln(n) tend vers une limite finie, notée γ. À ce jour,
on ne sait toujours pas si γ ∈ Q ou non. On a donc montré que Hn = ln(n) + γ+ o(1).

2. En encadrant x 7→ 1
x un peu mieux que par des rectangles, prouver que 1

2 ⩽ γ ⩽ 1. On montre
plus précisément que γ ≈ 0.577 à 10−3 près.

3. Déduire de 1 la limite de
2n∑

k=n+1

1
k quand n→ +∞.

4. (CCINP) Discuter selon les valeurs de a > 0 la nature de
∑

aHn .

Exercice 14 (précision sur les séries de Riemann). Soit α un réel.

1. Si α ∈ ]0, 1[, montrer que
n∑

k=1

1
kα ∼

n1−α

1−α .

2. Si α > 1, montrer que
∞∑

k=n+1

1
kα ∼

1
α−1

1
nα−1 .

Exercice 15 (précision sur la série harmonique).

1. Soit
∑

an et
∑

bn deux séries à termes positifs. On suppose que an ∼ bn et que
∑

an converge.
Montrer que les restes de ces deux séries sont équivalents.

2. Application : montrer que Hn = ln(n) + γ+
1

2n
+ o

Å
1

n

ã
Indication : on se servira de l’exercice précédent, après avoir posé un = Hn−ln(n)−γ et vn = un−un−1.

Exercice 16 (série harmonique alternée).

1. Montrer que la série
∑ (−1)k+1

k converge, mais pas absolument.

2. Méthode 1. En remarquant que 1
k+1 =

1
∫

0

xk dx, déterminer la somme de la série étudiée.

3. Méthode 2. Écrire l’inégalité de Taylor-Lagrange appliquée à f : x 7→ ln(1+x) en 0, et retrouver
la somme de la série étudiée.

4. Méthode 3. Pour chaque n dans N∗, on pose Sn =
n∑

k=1

(−1)k+1

k . Montrer que S2n = H2n −Hn, et

retrouver encore une fois la somme de cette série.

Exercice 17 (séries de Bertrand). On appelle série de Bertrand, toute série de la forme
∑ 1

nα lnβ(n)
,

où α et β sont deux réels.

1. Montrer que si α < 0, la série est grossièrement divergente.

2. On suppose α ∈ [0, 1[. Trouver k dans ]0, 1[ tel que nk × 1
nα lnβ(n)

→ +∞. En déduire que la série
de Bertrand diverge.

3. Si α > 1, monter que la série de Bertrand converge (imiter la question précédente).

4. Si α = 1, conclure grâce à une comparaison série-intégrale.
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Exercice 18 (règle de Raabe-Duhamel). On cherche à améliorer la règle de D’Alembert dans le cas
douteux, c’est-à-dire dans le cas où an+1

an
→ 1. Soit

∑
an une série à termes strictement positifs telle

que
an+1

an
= 1− α

n
+ o

Å
1

n

ã
,

où α est un réel. On notera que l’on a bien an+1

an
→ 1.

1. On suppose que α > 1 et on considère un réel β de ]1, α[. On pose alors vn = 1
nβ

pour tout n
dans N∗.
(a) Démontrer que an+1

an
⩽ vn+1

vn
à partir d’un certain rang.

(b) En déduire que
∑

an converge.
2. Si α < 1, montrer que

∑
an diverge.

3. Application : donner la nature de la série
∑Ç

n∏
k=1

√
k sin

Ä
1√
k

äå
.

4. En s’aidant des séries de Bertrand (exercice précédent), montrer que tout peut arriver quand
α = 1 (cas douteux de la règle de Raabe-Duhamel).

Exercice 19 (transformation d’Abel). Soit (an)n∈N et (un)n∈N deux suites numériques.

On pose, pour tout entier n, Un =
n∑

k=0

uk la somme partielle associée à (un)n∈N.

1. Montrer que l’on peut écrire, pour tout entier non nul n,

n∑
k=1

akuk = [anUn − a0U0]−
n∑

k=1

(ak − ak−1)Uk−1.

On notera l’analogie avec une intégration par parties. On suppose maintenant que
• (an)n∈N est une suite de réels positifs, décroissante, tendant vers 0,
•
∑

un est une série de complexes bornée.
2. Montrer que

∑
anun est une série convergente. Retrouver le théorème spécial des séries alternées.

3. Montrer que les séries
∑ e inθ

n et
∑ cos(n)

n ln(n) sont convergentes (où θ ̸≡ 0 [2π]).

3.3 Exercices plus techniques

Exercice 20 (Centrale-Supélec). Étudier la nature de la série
∑

un où, pour tout entier non nul n,

un =

{
1/n si n est un carré,

(−1)n/n sinon.

Indication : considérer une série convergente
∑

vn telle que
∑

(un + vn) soit une STP intéressante.

Exercice 21 (École Polytechnique). Nature et calcul de
∞∑
n=0

(−1)n

4n(4n+1) .

L. Euler A. L. Cauchy N. Abel J. Bertrand B. Riemann H. von Koch

(1707-1783) (1789-1857) (1802-1829) (1822-1900) (1826-1846) (1870-1924)
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Du Calcul différentiel sur Rn 4
✓ Avoir compris que le Calcul différentiel se fait rai-

sonnablement sur des ouverts.
✓ Savoir calculer des dérivées partielles, y compris

dans les cas où la fonction est définie « par mor-
ceaux » (dans ce cas, on revient au taux d’accrois-
sement).

✓ Savoir expliquer ce qu’est la différentielle d’une
fonction (de classe C1) en un point.

✓ Connaître le lien fondamental qui unie df(a) et
∇f(a).

✓ Savoir donner le développement limité à l’ordre 1
ou 2 d’une fonction en un point. Savoir l’exprimer
grâce à la différentielle, les dérivées partielles ou le
gradient de la fonction.

✓ Savoir interpréter géométriquement le gradient
grâce aux lignes de niveau.

✓ Savoir donner une équation de la droite tangente à
une courbe implicite régulière ou du plan tangent à
une surface implicite régulière.

✓ Savoir énoncer les conditions d’ordre 1 pour recher-
cher les extrémums d’une fonction.

✓ Savoir résoudre des EDP par changement de va-
riables.

♠ Si f est une fonction définie « par morceaux » par
f(x, y) = x

y
si y ̸= 0, et f(x, 0) = 0, une erreur

fréquente, lorsque l’on veut calculer ∂f
∂x

(0, 0) est de
calculer ∂f

∂x
(0, y) pour y ̸= 0 et de passer à la li-

mite y → 0. Vous sous-entendez alors que f est de
classe C1, ce qui peut ne pas être le cas ! La seule
méthode : repasser par des taux d’accroissement.

♠ Confondre df , df(a) et df(a) · h (certes, les phy-
siciens notent ces trois objets de la même façon :
df).

♠ Croire que (x, y) 7→ f(x, y) est continue c’est dire
que f est continue par rapport à x et par rapport
à y.

♠ Croire que l’existence des dérivées partielles de f
entraîne la continuité de f .

♠ Ne pas se placer sur un ouvert pour utiliser la condi-
tion du 1er ordre lors de la recherche des extrémums
locaux.

♠ Croire que la condition du 1er ordre (∇f(a) = 0⃗)
est suffisante pour avoir un extremum.

♠ Oublier l’hypothèse (suffisante) « de classe C2 »
avant d’appliquer le théorème de Schwarz, ou croire
que ce théorème est une évidence.

4.1 Exercices de base

Exercice 1 (dérivée d’une composée). Un point mobile t 7→ M(t) décrit la courbe C de l’espace dont

un paramétrage est
®

x(t) = r cos(ωt),
y(t) = r sin(ωt),
z(t) = pt.

1. Interpréter graphiquement les paramètres ω, r et p et esquisser un tracé de C.

2. On suppose C plongée dans un champ électrique dérivant d’un potentiel électrique V. Exprimer
d
dtV(M(t)) en fonction des dérivées partielles de V.

Exercice 2 1. Soit f : (x, y) 7→ xy
x2+y2

complétée par f(0, 0) = 0. Montrer que f est continue par
rapport à x et par rapport à y mais n’est pas continue en (0, 0).

2. La fonction f : (x, y) 7→ x3y
x2+y2

est-elle prolongeable par continuité en (0, 0) ?

Exercice 3 (une fonction désagréable). On définit f : R2 → R par f(x, y) = y2

x si x ̸= 0 et f(0, y) = y.

1. Montrer que f admet des dérivées partielles en (0, 0).

2. Montrer mieux : quel que soit le vecteur h de R2, la fonction t 7→ f(th) est dérivable en 0.

3. Prouver cependant que f n’est pas continue en (0, 0).

Exercice 4 (l’exemple de Peano). On définit f : R2 → R par f(x, y) =

 xy
x2 − y2

x2 + y2
si (x, y) ̸= (0, 0)

0 si (x, y) = (0, 0).

Montrer que les dérivées partielles ∂2f
∂x∂y (0, 0) et ∂2f

∂y∂x(0, 0) existent mais ne sont pas égales. Qu’en dé-
duire sur f ?
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La surface d’équation Guiseppe Peano La surface d’équation

z = y2

x . (1858-1932) z = xy x2−y2

x2+y2
.

Exercice 5 (différentielle d’une norme euclidienne). On note N la fonction qui à tout (x1, . . . , xn) de
Rn associe

»
x21 + . . .+ x2n.

1. Si a ̸= 0Rn , montrer que N est de classe C1 en a et déterminer dN(a) par deux méthodes : 1)
avec les dérivées partielles, 2) avec une approximation affine.

2. Montrer que N n’est pas de classe C1 au voisinage de 0Rn .

Exercice 6 (extrémum local). Soit f : R2 → R définie sur R2 par f(x, y) = x3 + 3xy2 − 15x− 12y.
1. Trouver les points critiques de f .
2. Parmi eux on trouvera a = (1, 2). Montrer que a n’est pas un extremum local de f grâce à un

développement limité à l’ordre 2.

Figure 1 – Différents points de vue de S : z = x3 + 3xy2 − 15x− 12y.

Exercice 7 Soit f : (x, y) 7→ y2 − x2y + x2 définie sur D = {(x, y) ∈ R2 | x2 − 1 ⩽ y ⩽ x2 + 1}.
1. Déterminer les points critiques de f sur D̊ = D \ ∂D.
2. Déterminer les extrema de f sur ∂D puis sur D.

4.2 Les grands classiques

Exercice 8 (différentielle du déterminant). On identifie M2(R) avec R4, en identifiant la matrice(
a b
c d

)
avec le 4-uplet (a, b, c, d).

1. Calculer les dérivées partielles premières de det : M2(R)→ R.
2. En déduire la différentielle de det en I2 est tr.
3. (∗) Si n ∈ N∗, on identifie de même Mn(R) avec Rn2 . Démontrer que

−−→
grad detM = Com(M) (la

comatrice de M a pour terme de place (i, j) : (−1)i+j∆i,j(M)). En déduire que d(det)(In) = tr.

Exercice 9 (fonctions homogènes et théorème d’Euler). On considère un ouvert D ⊂ Rn tel que pour
tout x ∈ D, ∀t > 0, tx ∈ D. Si α ∈ R, on dit qu’une fonction f : D→ R est homogène de degré α quand

∀x ∈ D, ∀t > 0, f(tx) = tαf(x).
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1. Montrer que f : (x, y) 7→ x ln(xy ) est homogène et donner son degré.

2. On suppose que f est de classe C1. Montrer que si f est homogène de degré α alors la relation
d’Euler est vérifiée :

∀x ∈ D,

n∑
k=1

xk
∂f

∂xk
(x) = αf(x).

Écrire cette relation en fonction du gradient
−−→
gradf de f .

3. Réciproquement ? On fixe x dans D et on pose φ(t) = f(tx) pour tout t > 0.
(a) Calculer φ′(t) pour tout t > 0.
(b) On suppose que la relation d’Euler est vérifiée : en l’écrivant en tx pour tout t > 0 et x ∈ D,

donner une équation différentielle portant sur φ et conclure.

Exercice 10 (une EDP 1). On cherche à résoudre 2∂f
∂x (x, y) −

∂f
∂y (x, y) = x où f est une fonction

inconnue de classe C1 sur R2.
1. Effectuer le changement de variables affine Φ(x, y) = (X,Y) avec X = ax+ by, Y = cx+ dy (où

ad− bc ̸= 0) et réécrire l’EDP dans le nouveau système de coordonnées (X,Y).
2. Trouver des coefficients adaptés pour que cette nouvelle EDP soit simple à résoudre, et en

déduire les solutions du problème initial.

Exercice 11 Un ouvert U de Rn est dit connexe par arcs quand tous points de U peuvent être reliés
par un arcs de classe C1 tracé dans U : ∀(a, b) ∈ U2, ∃γ ∈ C1([0, 1],U), (γ(0) = a ∧ γ(1) = b).

Soit f : U→ R de classe C1 telle que ∂f
∂x1

= . . . = ∂f
∂xn

= 0 sur U.
1. Si U est un ouvert connexe par arcs, démontrer que f est constante sur U.
2. Soit U = R2 \ D où D est la droite d’équation y = 0. Montrer que U est un ouvert de R2 et

proposer une fonction f : U→ R de classe C1, non constante, telle que ∂f
∂x = ∂f

∂y = 0.

3. Soit U = R2\D+ où D+ est la demi-droite R+(1, 0). Expliquer pourquoi U est un ouvert connexe
par arcs (un dessin suffira). Soit alors f : U → R définie par f(x, y) = y

|y|e
−1/x2 si x > 0 et

f(x, y) = 0 sinon. Montrer que f est de classe C1, que ∂f
∂y = 0 mais que pourtant f dépend de

sa 2e variable !

Exercice 12 Soit
−→
F (x, y, z) = (y2 cos(x), 2y sin(x) + e2z, 2ye2z).

1. Montrer que
−→
F est un champ de gradients.

2. Déterminer le potentiel V dont dérive
−→
F sachant que V(0, 0, 0) = 1.

4.3 Équipotentielles

Exercice 13 Montrer que les surfaces S1 : xy + yz − 4zx = 0 et S2 : 3z2 − 5x + y = 0 se coupent à
angle droit au point (1, 2, 1).

Exercice 14 Soit a, b, c > 0. On considère l’ellipsoïde E d’équation x2

a2
+ y2

b2
+ z2

c2
= 1.

1. Montrer que E est une surface régulière et déterminer une équation du plan tangent en tout
point.

2. Si a = b = c (E est une sphère), retrouver le fait que
−→
OA est un vecteur normal à TA E.

Exercice 15 Soit C la courbe d’équation ex + ey + x+ y = 2.
1. Vérifier que a = (0, 0) est un point régulier de C.
2. On admet qu’il existe une fonction φ de classe C∞ telle que C soit, au voisinage de a, la courbe

d’équation y = φ(x). Déterminer φ′(0).
3. Trouver le développement limité à l’ordre 2 en 0 de φ et en déduire l’allure de la courbe C au

voisinage de a.
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4.4 Les exercices plus techniques

Exercice 16 (Arts & Métiers). Soit φ : R→ R une fonction de classe C2 et soit f la fonction définie
sur R∗ ×R par

f(x, y) = φ
(y
x

)
.

1. Calculer le laplacien ∆f =
∂2f

∂x2
+

∂2f

∂y2
en fonction des dérivées de φ.

2. Quelles sont les fonctions φ pour lesquelles f est harmonique c’est-à-dire telle que ∆f = 0 ?
Calculer alors f .

Exercice 17 (Arts & Métiers). Soit f :
R2 −→ R

(x, y) 7−→
√

x2 + y2 + x2 − 3.
Déterminer les extrema de

f sur D = {(x, y) ∈ R2 | x2 + y2 ⩽ 16}.

Exercice 18 (laplacien en polaires). Soit f de classe C2 sur R2. On définit la fonction f∗ qui « repré-
sente f en coordonnées polaires » c’est-à-dire définie par

f∗(r, θ) = f(r cos θ, r sin θ).

1. Exprimer les dérivées partielles 1res et 2des de f∗ en fonction de celles de f .
2. En déduire le laplacien de f en fonction des dérivées partielles de f∗ (les physiciens disent « le

laplacien en polaires »).

Exercice 19 (une EDP 2). Déterminer toutes les fonctions f de classe C1 sur l’ouvert R2 \ (R−×R)
telles que

x
∂f

∂y
− y

∂f

∂x
=
√
x2 + y2.

Montrer qu’il n’existe pas de solution de classe C1 sur R2 tout entier.

Exercice 20 (une EDP 3). (∗) Déterminer les fonctions f de classe C2 sur R2, à valeurs dans R, telles
que

∂2f

∂x2
+ 2

∂2f

∂x∂y
− 3

∂2f

∂y2
= 0.

Pour ce faire, on déterminera un réel α pour que l’application (x, y) 7→ (x+y, αx−y) soit un changement
de variables convenable pour la résolution de cette EDP.

Exercice 21 (une EDP 4 – équation de la chaleur en 1D). (∗) On maintient les extrémités d’une barre
de métal de longueur L à la température 0, et on note T(x, t) la température à l’abscisse x et à l’instant
t sur cette barre. J. Fourier a établi en 1807 que

∂2T

∂x2
= c

∂T

∂t

où c > 0 est une constante liée au métal constituant la barre. On suppose que T est une fonction de
classe C2 : par hypothèse, la fonction f : x 7→ T(x, 0) – qui modélise la température de la barre à
l’instant t = 0 — est donc de classe C2 sur [0,L] et vérifie f(0) = f(L) = 0. On suppose de plus qu’elle
n’est pas identiquement nulle.

On s’intéresse aux solutions de la forme T : (x, y) 7→ g(x)h(t) où g : [0,L]→ R et h : R+ → R sont
de classe C2 (fonction à variables séparées).

1. Justifier que h(0) ̸= 0 et montrer l’existence d’un réel x0 tel que g(x0) ̸= 0.
2. En déduire que h est solution d’une EDL1 que l’on résoudra.
3. Expliquer pourquoi il existe un réel positif t0 tel que (h(t0), h

′(t0)) ̸= (0, 0) et en déduire que g
est solution d’une EDL2 de la forme g′′ = kg, où k est une constante réelle non nulle.

4. Démontrer qu’il est impossible d’avoir k > 0.
5. Conclure : la fonction T est nécessairement de la forme (x, t) 7→ b sin(nπ xL) exp

Ä
−n2

π
2

cL2

ä
où

n ∈ N∗ et b ∈ R∗.
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4.5 (∗) Intégrales multiples

Exercice 22 Après avoir représenté D, calculer
∫∫

D
f(x, y) dxdy dans les cas suivants :

1. f(x, y) = x2 + y2 et D = {(x, y) ∈ R+
2 | x+ y ⩽ 1}.

2. f(x, y) = ex+y et D = {(x, y) ∈ R2 | 0 ⩽ x ⩽ 1 et 0 ⩽ y ⩽ 2}.
3. f(x, y) = ex

2+y2 et D = {(x, y) ∈ R2 | x2 + y2 ⩽ R2} (avec R > 0).

Exercice 23 Après avoir représenté D, calculer
∫∫∫

D
f(x, y, z) dxdydz dans les cas suivants :

1. f(x, y, z) = 1 et D = {(x, y, z) ∈ R+
3 | x+ y + z ⩽ 1}.

2. f(x, y, z) = z et D = {(x, y, z) ∈ R3 | x2 + y2 ⩽ 1 et 0 ⩽ z ⩽ h} (avec h > 0).

3. f(x, y, z) = 1
(x2+y2+z2)α

et D = {(x, y, z) ∈ R3 | a2 ⩽ x2 + y2 + z2 ⩽ b2} où α ∈ R et 0 < a < b.

Exercice 24 (intégrale de Gauss). On pose, pour R > 0, IR =

∫ R

0
e−x2

dx. Écrire (IR)
2 comme une

intégrale double sur le pavé [0,R]2. En encadrant ce pavé entre deux quarts de disque, déterminer la

célèbre valeur de
∫ +∞

0
e−x2

dx (définie comme étant la limite de IR quand R→ +∞).

Exercice 25 Soit E l’ellipse d’équation x2

a2
+ y2

b2
= 1 (où a, b > 0). Faire un dessin. Montrer que la

surface que E délimite est πab.
Déterminer de même le volume contenu dans l’ellipsoïde d’équation x2

a2
+ y2

b2
+ z2

c2
= 1 (où a, b, c > 0).

Exercice 26 On pose D = {(x, y) ∈ R2 | x ⩾ 0, y ⩾ 0, x+ y ⩽ 1}. Calculer
∫∫

D
(x+ y)2ex

2−y2 dxdy

en faisant le changement de variable u = x+ y et v = x− y.

Exercice 27 Calculer le centre de gravité d’un demi-disque D de rayon R, c’est-à-dire le point G de
D tel que
∫∫

M∈D
−−→
GMdM = 0⃗. Une autre façon sera vue en SI s’appuyant sur un théorème de Guldin.

Exercice 28 Retrouver l’aire d’une sphère de rayon R grâce à une intégrale surfacique.

Exercice 29 Pour tout n dans N∗, on note Bn(R) la boule {(x1, . . . , xn) ∈ Rn | x21 + . . . + x2n ⩽ R2}
de centre 0, de rayon R, et Vn(R) son volume, c’est-à-dire

Vn(R) =

∫∫

. . .

∫

Bn(R)
dx1dx2 . . . dxn.

1. Établir que Vn(R) = Vn(1)R
n.

2. Calculer V1(1), V2(1) et V3(1) et retrouver les volumes appris dès le collège.

3. Montrer que pour tout n dans N∗, Vn+2(1) = Vn(1)

∫∫

B2(1)
(1− x2 − y2)

n
2 dxdy.

4. Grâce à un changement de variables polaires, montrer que
∫∫

B2(1)
(1− x2 − y2)

n
2 dxdy = 2π

n+2 .

5. En déduire les volumes de B4(1), B5(1), B6(1), puis celle de B2k(R) pour tout k.

6. On calcule de même V2k+1(1) =
2k!(4π)k

(2k+1)! pour tout k. Grâce à un programme en Python, déter-
miner la valeur de n telle que Vn(1) soit maximal.

7. Lorsque n → ∞, prouver que la boule Bn(1) occupe une place négligeable dans son cube cir-
conscrit [−1, 1]n.
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De l’Algèbre linéaire (partie 2) 5
✓ Savoir expliquer pourquoi toute matrice M ad-

met un polynôme annulateur à l’aide de la famille
(In,M,M2, . . . ,Mn2

).

✓ Avoir compris le lien entre sous-espace stable et ma-
trice par blocs.

✓ Connaître toutes les caractérisations possibles des
hyperplans.

✓ Étant donné un hyperplan de Rn décrit par une
équation, savoir en exhiber une base.

✓ Savoir donner une base d’une intersection de p hy-
perplans : résoudre un système linéaire.

✓ Avoir compris que les transvections (Li ← Li + αLj

avec i ̸= j) laissaient invariant le déterminant.

✓ Savoir calculer un déterminant en le développant
suivant une rangée après avoir fait des opérations
élémentaires Li ← Li + αLj (i ̸= j).

✓ Connaître le déterminant de Vandermonde et son
implication dans la théorie de l’interpolation de La-
grange.

♠ Oublier de dire « non nulle » pour les formes li-
néaires dont le noyau est un hyperplan.

♠ Ne pas avoir compris qu’un polynôme en M est une
matrice, et qu’un polynôme en u est un endomor-
phisme.

♠ Oublier de remplacer le « 1 » par In ou IdE quand
on explicite P(M) ou P(u) : il ne faut pas écrire
« M+ 1 » si M est une matrice !

♠ Écrire P(u(x)) ou P(x), qui n’ont aucun sens, au
lieu de P(u)(x).

♠ Ne pas savoir immédiatement ce que valent (PQ)(u)
et (PQ)(M) (avec les notations du cours).

♠ Croire que K[M] est de dimension infinie parce que
c’est le cas de K[X].

♠ Parler « du » supplémentaire d’un hyperplan.

♠ Parler de « l’ » équation d’un hyperplan.

♠ Croire que l’équation y = ax désigne une droite
dans R3 ; elle représente un plan.

♠ Croire que det(λA) = λ det(A) ou que det(A+B) =
det(A) + det(B) : Ce n’est vrai qu’en dimension 1.

♠ Développer un déterminant avant d’avoir fait des
opérations sur les lignes et les colonnes : il faut faire
apparaître des 0 le plus possible !

♠ Ne pas vraiment maîtriser le symbole
∏

1⩽i<j⩽n

dans

la formule de Vandermonde.

5.1 Polynômes de matrices, d’endomorphismes

Exercice 1 Donner un polynôme annulateur (non nul) pour une projection, une symétrie, une homo-
thétie et pour l’application nulle.

Exercice 2 1. Rappeler l’argument qui permet de prouver qu’en dimension finie, tout endomor-
phisme admet un polynôme annulateur non nul.

2. Montrer que la dérivation de K[X] n’admet pas de polynôme annulateur non nul.

3. Montrer que si M ∈M2(K), un polynôme annulateur de M est X2 − tr(M)X + det(M).

4. En déduire une expression de M−1 quand M ∈ GL2(K).

Exercice 3 (polynôme minimal). Soit n dans N∗ et M dans Mn(K).

1. Rappeler pourquoi M possède un polynôme annulateur non nul.

2. Montrer qu’il existe un unique polynôme, noté πM, unitaire, annulateur de M et de degré le plus
petit possible.

3. Justifier que deg πM ⩽ n2 (on verra que deg πM ⩽ n au chapitre 7).

4. Grâce à une division euclidienne, démontrer que tout polynôme annulateur de M est un multiple
de πM.

5. Démontrer que dimK[M] = deg πM.

23



5.2 Déterminants

Exercice 4 Montrer qu’il n’existe aucune matrice antisymétrique inversible de taille 2025.

Exercice 5 Soit m un réel. Calculer

∣∣∣∣∣∣∣∣
m 1 1 1
1 m 1 1
1 1 m 1
1 1 1 m

∣∣∣∣∣∣∣∣ en factorisant le plus possible. Généraliser.

Exercice 6 Soit A une matrice réelle 3×3 dont X2−4X+3 est un polynôme annulateur. En supposant
que det(A) > 0, calculer det(A− 2I3).

Exercice 7 (Déterminant tridiagonal). Pour tout entier naturel non nul n, on pose ∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0
−1

. . .
. . .

. . .
. . . −1

0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1. Trouver une relation de récurrence d’ordre 2 vérifiée par la suite (∆n)n∈N∗ .

2. En déduire une expression simple de ∆n en fonction de n.

Exercice 8 Grâce à un déterminant de Vandermonde, retrouver le fait que la famille (fa)a∈C est libre,
où, pour tout complexe a, fa : x 7→ eax est définie sur un intervalle I de longueur non nulle.

Exercice 9 Soit a dans C. On considère l’endomorphisme μa :
C −→ C

z 7−→ az,
où C est vu comme

R-espace vectoriel. Déterminer det(μa) et tr(μa). Et si C est vu comme un C-espace vectoriel ?

Exercice 10 Soit A dans M2(K). On considère l’endomorphisme LA :
M2(K) −→ M2(K)

X 7−→ AX.
Déter-

miner sa trace et son déterminant. Généraliser quand A ∈Mn(K), où n ∈ N∗.

Exercice 11 Soit n dansN∗. Calculer la trace et le déterminant de l’endomorphisme Mn(K) −→ Mn(K)
M 7−→ M⊺.

Indication : que peut-on dire de Sn(K) et An(K) ?

Exercice 12 Soit a, b et c des réels tels que b ̸= c. On souhaite calculer le déterminant n× n suivant :

D(a, b, c) =

∣∣∣∣∣∣∣∣∣
a c

. . .

b a

∣∣∣∣∣∣∣∣∣ .
1. Montrer que D(a+X, b+X, c+X) est un polynôme affine.

2. En déduire la valeur de D(a, b, c).

3. Étudier le cas où b = c par un astucieux passage à la limite.

Exercice 13 (un déterminant sans calcul). Trouver la valeur de

∣∣∣∣∣∣∣∣∣
13 23 · · · 53

23 33 · · · 63

...
...

...
53 63 · · · 93

∣∣∣∣∣∣∣∣∣.
Indication : que peut-on dire d’une famille de 5 polynômes de R3[X] ?

Exercice 14 Soit n et p dans N∗ tels que p < n. Si A ∈ Mn,p(K) et B ∈ Mp,n(K), démontrer que
det(AB) = 0. Indication : on pourra se servir du théorème du rang.
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Exercice 15 Soit n dans N∗. Démontrer que det
(
ij
)

1⩽i⩽n
1⩽i⩽n

= 1!2! . . . n!.

Exercice 16 (Centrale 2024). Soit n dans N∗, et soit A et B dans Mn(R). On suppose que A et B
sont semblables dans Mn(C), c’est-à-dire ∃P ∈ GLn(C), A = PBP−1. Montrer qu’en fait A et B sont
semblables dans Mn(R).

Indication. On écrira P = Q+ iR avec Q,R réelles et on expliquera pourquoi la fonction polynôme
x 7→ det(Q + xR) n’est pas identiquement nulle sur R.

Exercice 17 Soit n un entier au moins égal à 2. Trouver les matrices A de Mn(K) telles que

∀X ∈Mn(K), det(A + X) = det(A) + det(X).

Indication : montrer qu’une telle matrice A n’est pas inversible. Ensuite, imaginer un instant qu’une
colonne de A soit non nulle, et créer une matrice inversible X astucieusement.

Exercice 18 (comatrice). Soit n dans N∗. Si A ∈ Mn(K) et (i, j) ∈ J1, nK2, on note ∆i,j(A) le dé-
terminant de la matrice obtenue en enlevant la ligne i et la colonne j de A. On note alors Com(A) la
matrice carrée de taille n dont le terme de place (i, j) est (−1)i+j∆i,j(A).

1. Calculer Com(A) si A =

Å
a b
c d

ã
.

2. Démontrer que A× Com(A)⊺ = det(A)In. En déduire A−1 si A ∈ GL2(Z).

3. Application. On note GLn(Z) l’ensemble des matrices A de Mn(Z) telles que A−1 ∈Mn(Z).

(a) Proposer une matrice A dans M2(Z) telle que det(A) ̸= 0 mais qui n’est pas dans GL2(Z).

(b) Démontrer que GLn(Z) =
{
A ∈Mn(Z) | det(A) ∈ {−1, 1}

}
.

Exercice 19 Soit n et a1, . . . , an des réels. Calculer∣∣∣∣∣∣∣∣∣
a1 a1 · · · a1
a1 a2 · · · a2
...

...
. . .

...
a1 a2 · · · an

∣∣∣∣∣∣∣∣∣ .
Que dire si ak = k pour tout k ?

Exercice 20 Soit n et p des entiers naturels, n étant non nul. Calculer le déterminant de la matriceÄ(n+i−1
j−1

)ä
1⩽i⩽p+1
1⩽j⩽p+1

. Indication : on opérera Li ← Li − Li−1 pour i > 1.

Exercice 21 Soit X un ensemble non vide, n un entier naturel non nul et (f1, . . . , fn) une famille libre
dans F(X,K). Montrer qu’il existe n éléments x1, . . . , xn de X tels que la matrice

(
fi(xj)

)
1⩽i⩽n
1⩽j⩽n

soit

inversible.

Indication : on le montrera par récurrence sur n en développant un déterminant par rapport à sa
dernière colonne.

5.3 Formes linéaires et hyperplans

Exercice 22 1. Soit n dans N∗. Montrer que l’ensemble des matrices de trace nulle est un hyperplan
de Mn(R) ?

2. Pourquoi l’ensemble des polynômes qui sont des multiples de X est-il est un hyperplan de K[X] ?

Exercice 23 Soit H un hyperplan d’un K-espace vectoriel E. Montrer que tout vecteur de E qui n’est
pas dans H engendre un supplémentaire de H.
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Exercice 24 Soit E un K-espace vectoriel de dimension n, supposée non nulle. Montrer que tout
sous-espace vectoriel de dimension p ∈ [[0, n− 1]] est l’intersection de n− p hyperplans.

Exemple. Dans R4, décrire la droite Ru, où u = (1, 2, 3, 4), comme une intersection de 3 hyperplans.

Exercice 25 (utilisation du théorème du rang). Soit E un K-espace vectoriel de dimension n, supposée
non nulle.

1. Soit H1, . . . ,Hp des hyperplans de E. Montrer que dim
p⋂

k=1

Hk ⩾ n− p.

2. Soit (φ1, . . . ,φp) une famille libre de E∗. Montrer que dim
p⋂

k=1

Ker(φk) = n− p.

Exercice 26 (Détermination du dual de Mn(R)). Soit n dans N∗.

1. Si A ∈Mn(R), vérifier que ΦA : M 7→ tr(AM) est une forme linéaire sur Mn(R).

2. Réciproquement, montrer que toute forme linéaire sur Mn(R) est de cette forme.

Exercice 27 Soit φ une forme linéaire sur Mn(R) qui vérifie la propriété fondamentale de la trace :

∀(A,B) ∈Mn(R)
2, φ(AB) = φ(BA).

Montrer que φ est proportionnelle à la trace. Indication : utiliser les matrices Ei,j et l’exercice précédent.

Exercice 28 (Dualité). On rappelle que l’on note E∗ au lieu de L(E,K) si E est un K-espace vectoriel.
Si (φ, x) ∈ E∗ × E, le scalaire φ(x) se note souvent ⟨φ, x⟩.

1. Si E est de dimension n, on considère B= (e1, . . . , en) une base de E. Pour chaque i, on note e∗i
la forme linéaire qui à chaque x ∈ E associe sa composante sur ei. Que vaut ⟨e∗i , ej⟩ pour tous i
et j ? En déduire que B∗ = (e∗1, . . . , e

∗
n) est une base de E∗, appelée base duale de B.

2. Déterminer B∗ quand B est la base canonique de Rn[X]. Indication : penser à Taylor !

3. On suppose ici que E n’est pas de dimension finie, et qu’il possède une base B = (ei)i∈I.
Montrer que B∗ est toujours libre, mais pas génératrice de E∗.

A-Th. Vandermonde P. S. de Laplace A. L. Cauchy W. R. Hamilton A. Cayley

(1735-1796) (1749-1827) (1789-1857) (1805-1865) (1821-1895)
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Des espaces vectoriels normés 6
✓ Savoir ce qu’est une norme dans le cas général, et

connaître les normes des espaces usuels.
✓ Savoir montrer qu’une partie est convexe, bornée.
✓ Savoir montrer que deux normes sont équivalentes,

ou à défaut, savoir utiliser une suite pour montrer
qu’elles ne le sont pas.

✓ Connaître la définition de la convergence des suites,
et savoir la caractériser par les coordonnées en di-
mension finie.

✓ Savoir montrer qu’une partie est/n’est pas ou-
verte/fermée. Utiliser les suites pour montrer
qu’une partie est fermée.

✓ Savoir expliquer à l’aide des suites ce qu’est une
partie dense.

♠ Oublier les modules dans les normes usuelles sur les
C-espaces vectoriels.

♠ Croire que toutes les boules sont rondes : ce n’est
vrai que pour la norme ∥ · ∥2 (aussi appelée norme
euclidienne).

♠ Ne pas avoir compris que le caractère borné dépend
de la norme : une partie peut être bornée pour une
norme, et non bornée pour une autre.

♠ Croire qu’une partie qui n’est pas ouverte est né-
cessairement fermée : penser à [0, 1[ dans R.

6.1 Normes sur un espace vectoriel

Exercice 1 (Centrale-Supélec 2022, extrait). Montrer que toutes les normes sur R sont proportion-
nelles à la valeur absolue.

Exercice 2 Pour tout (x, y) dans R2, on pose N(x, y) = max(|x|, |y|, |x− y|).
1. Montrer que N est une norme sur R2.

2. Représenter sa boule unité.

Exercice 3 Soit A = (x, y) et B = (x′, y′) dans R2. On note AB la distance euclidienne entre A et B,
c’est-à-dire

√
(x− x′)2 + (y − y′)2. On pose alors

d(A,B) =

ß
AB si O,A,B sont alignés,

OA+OB sinon.

On dit que d est la distance SNCF sur R2.

1. Proposer une explication de cette appellation.

2. On admet que d vérifie les trois axiomes d’une distance (l’inégalité triangulaire est fastidieuse à
montrer). Représenter la boule fermée de centre (1, 0) de rayon 2.

3. En déduire que d n’est pas normique, c’est-à-dire qu’il n’existe aucune norme ∥ · ∥ sur R2 telle
que d(A,B) = ∥A− B∥ pour tous A et B dans R2.

Exercice 4 Sur l’espace E = C1([0, 1],R), on pose, pour toute f dans E,

∥f∥ = ∥f∥∞,[0,1] + ∥f ′∥∞,[0,1].

Montrer que ∥f∥ est correctement défini et que ∥ · ∥ est une norme sur E.

Exercice 5 On pose F = {f ∈ C1([0, 1],R) | f(0) = 0}, et, pour toute f dans F, N(f) = ∥f ′∥∞,[0,1].

1. Montrer que F est un sous-espace vectoriel de C1([0, 1],R) et que N est une norme sur F.

2. Montrer que N et ∥ · ∥∞,[0,1] ne sont pas équivalentes. Indication : on pourra considérer la suite
(x 7→ xn)n∈N.
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Exercice 6 Pour chaque P dans R[X] s’écrivant P =
n∑

k=0

akX
k, on pose

N1(P) = max
0⩽k⩽n

|ak| et N2(P) = sup
x∈[0,1]

|P(x)|.

Montrer que N1 et N2 sont des normes sur R[X], mais qu’elles ne sont pas équivalentes.

Exercice 7 (Centrale-Supélec). Si M ∈Mn(R), on pose ∥M∥2 =
√

tr(M⊺ ·M) et ∥M∥∞ = max
1⩽i,j⩽n

|mi,j |.

1. Expliciter ∥M∥2 en fonction des coefficients de la matrice M.

2. Montrer que ∥MN∥2 ⩽ ∥M∥2 · ∥N∥2 pour toutes M et N dans Mn(R). Indication : utiliser
l’inégalité de Cauchy-Schwarz dans Rn.

3. Montrer que l’on a seulement ∥MN∥∞ ⩽ n∥M∥∞∥N∥∞ pour toutes M et N dans Mn(R).

4. Montrer que pour toute norme ∥ · ∥ sur Mn(R), il existe c > 0 tel que ∥MN∥ ⩽ c · ∥M∥ · ∥N∥
quelles que soient M et N dans Mn(R).

6.2 Suites dans un EVN

Exercice 8 Pour tout entier n, on pose fn = x 7→ xn et on se place dans l’espace C([0, 1],R).
Montrer que (fn)n∈N converge pour la norme ∥ · ∥1,[0,1], mais pas pour la norme ∥ · ∥∞,[0,1].

Exercice 9 Soit A dans An(R). On suppose que (Ak)k∈N est une suite convergente dans Mn(R). Que
peut-on dire de sa limite ?
Indication. On utilisera le fait, démontré à l’exercice 15, qu’un sous-espace d’un EVN de dimension
finie est toujours fermé.

Exercice 10 Soit A dans Mn(K). On suppose qu’il existe une suite (ak) ∈ KN telle que la série
∑

akA
k

converge. Montrer que la somme de cette série est un polynôme en A. Indication. On utilisera le fait,
démontré à l’exercice 15, qu’un sous-espace d’un EVN de dimension finie est toujours fermé.

Exercice 11 (ACV =⇒ CV ?) Pour tout P dans R[X] on pose ∥P∥ = max
n∈N
|pn| où pn est, pour tout

entier n, le coefficient de degré n de P.

1. Montrer que ∥ · ∥ est correctement définie et que c’est une norme sur R[X].

2. Montrer que la série
∑ 1

2nX
n est absolument convergente dans (R[X], ∥ · ∥).

3. Montrer cependant que
∑ 1

2nX
n ne converge pas dans (R[X], ∥ · ∥).

Exercice 12 (∗) (Des suites dans l’espace des suites !) On note ℓ∞ l’espace des suites réelles bornées,
muni de la norme ∥ · ∥∞ et c0 celui des suites qui converge vers 0. Enfin, on note N le sous-espace de
c0 des suites valant 0 à partir d’un certain rang.

Montrer que N= c0.

6.3 Topologie sur un EVN

Exercice 13 Soit n dans N∗. L’espace vectoriel Mn(R) est muni d’une norme quelconque.

1. Montrer que GLn(R) est une partie ni bornée, ni convexe, ni fermée, mais qu’elle est ouverte.

2. Si n ⩾ 2, montrer que SLn(R) est partie ni bornée, ni convexe, ni ouverte, mais qu’elle est
fermée. Et si n = 1 ?

Rappel. L’ensemble SLn(R) est celui des matrices de Mn(R) dont le déterminant vaut 1.

Exercice 14 Soit A une partie d’un espace normé (E, ∥ · ∥).
1. Montrer que Å est la réunion de toutes les parties ouvertes incluses dans A.

2. En déduire que A est le plus petit fermé contenant A.
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Exercice 15 (topologie des sev). Soit (E, ∥ · ∥) un espace normé.

1. Montré que tout sous-espace vectoriel F distinct de E est d’intérieur vide (donc n’est jamais une
partie ouverte) ;

2. On suppose ici que dim(E) <∞. Montrer tout sous-espace vectoriel de E est fermé. Indication :
on utilisera des coordonnées dans une base adaptée.

3. On ne suppose plus E de dimension finie. Soit F un sous-espace vectoriel de dimension finie de
E. Montrer que F est fermé. Indication : si (xn)n∈N ∈ FN converge vers ℓ, on pourra considérer
F + Vect(ℓ).

4. Ici E = C([0, 1],R) et F = {f ∈ E | f(0) = 0}. Montrer que F est un sous-espace vectoriel fermé
pour ∥ · ∥∞ mais pas pour ∥ · ∥1.

Exercice 16 (topologie des hyperplans). On se place dans un EVN E de dimension quelconque.

1. Montrer que si F est un sous-espace vectoriel de E, alors F en est un aussi.

2. En déduire qu’un hyperplan est ou bien fermé, ou bien dense dans E.

Exercice 17 (topologie des boules). (E, ∥ · ∥) est un EVN.

1. Soit a ∈ E et r > 0. Montrer que Bo(a, r) = Bf(a, r) et que
˚̊ �Bf(a, r) = Bo(a, r).

2. (∗) Soit a, a′ ∈ E et r, r′ > 0. Montrer que Bo(a, r) = Bo(a′, r′) =⇒
[
a = a′ et r = r′

]
.

Remarque. Ces propriétés deviennent fausses en général dans un espace métrique.

Exercice 18 (Plus impressionnant que difficile). Soit (E, ∥ · ∥) un EVN quelconque et soit A ⊂ E. On
admet ici (cf. exercice 14) que Å est un ouvert de E et que A en est un fermé.

1. Montrer que
˚̊
A = Å et que

˚̊
A = Å.

2. Si E = R, muni de sa valeur absolue en tant que norme, exhiber une partie A telle que les sept

ensembles A, Å,A, Å, Å,
˚̊
A et Å soient deux à deux distincts.

Indication. On cherchera A sous la forme X∪Y∪Z avec X une partie dense dans [0, 1] et Y un
fermé d’intérieur vide.
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De la réduction (partie 1) 7
✓ Maîtriser le vocabulaire de base et savoir définir

tous les trucs propres.
✓ Savoir calculer un déterminant de façon efficace

(le plus factorisé possible) pour trouver les valeurs
propres d’une matrice carrée ou d’un endomor-
phisme (en dimension finie, évidemment).

✓ Avoir compris le lien entre endomorphisme diago-
nalisable et matrice carrée diagonalisable.

✓ Savoir déterminer des sous-espaces propres en ré-
solvant des systèmes linéaires.

✓ Savoir établir qu’une matrice est diagonalisable.
✓ Savoir que la dimension d’un sous-espace propre est

majorée par la multiplicité de la valeur propre à la-
quelle il est associé.

✓ Connaître la condition suffisante pour qu’une ma-
trice n× n soit diagonalisable : admettre n valeurs
distinctes.

✓ Savoir qu’une matrice n’ayant qu’une valeur propre
n’est diagonalisable seulement que lorsqu’elle est
proportionnelle à la matrice identité.

✓ Savoir montrer que le spectre d’une matrice nilpo-
tente est réduit à {0}.

✓ Savoir diagonaliser une symétrie ou une projection.

♠ Oublier de préciser la non nullité d’un vecteur
propre. Ainsi, si λ ∈ K et s’il existe x ∈ E tel que
f(x) = λx, on ne peut pas conclure que λ est une va-
leur propre de f . En effet, cette égalité est toujours
vraie, quel que soit λ, en prenant x = 0E.

♠ Croire qu’une matrice diagonalisable a des valeurs
propres toutes distinctes : la réciproque du théo-
rème du cours n’est pas vraie ! Il suffit de se souvenir
de la matrice nulle pour s’en convaincre.

♠ Croire qu’une combinaison linéaire de matrices
diagonalisables est aussi diagonalisable. Il faut
connaître le contre-exemple :Å

1 1
0 0

ã
+

Å
−1 0
0 0

ã
=

Å
0 1
0 0

ã
.

7.1 Exercices de base

Exercice 1 Soit n un entier naturel non nul et A dans Mn(K).

1. Montrer que A et A⊺ ont exactement les mêmes valeurs propres.

2. On pose A =

Å
1 1
0 2

ã
. Montrer que A et A⊺ n’ont pas les mêmes sous-espaces propres.

Exercice 2 Trouver A et B dans M2(R) non semblables mais telles que χA = χB.

Exercice 3 Soit A une matrice inversible de taille n.

1. Rappeler pourquoi 0 /∈ SpK(A).

2. Montrer que SpK(A
−1) = {1

λ
| λ ∈ SpK(A)}.

3. Pour chaque λ dans SpK(A), montrer que E 1
λ

(A−1) = Eλ(A).

4. Si χA = a0 + a1X + . . . + anX
n, démontrer que χA−1 = 1

a0

[
an + an−1X + . . . + a0X

n
]

: c’est le
polynôme χA « lu à l’envers » ! (et normalisé).

Exercice 4 Montrer que les matrices suivantes sont diagonalisables sur R et déterminer leurs éléments
propres.

A =

Å
4 2
2 7

ã
B =

Ñ
2 −2 1
2 −3 2
−1 2 0

é
Calculer toutes les puissances de A et B (pour B, trouver un polynôme annulateur de degré 2).

30



Exercice 5 (oral CCINP). Diagonaliser

á
0 . . . 0 1
...

...
...

0 . . . 0 1
1 . . . 1 1

ë
, matrice de taille n ⩾ 2.

Exercice 6 (théorème spectral en dimension 2).

1. Soit a, b, c trois réels. Montrer que
Å
a b
b c

ã
est diagonalisable sur R.

2. Trouver une matrice symétrique 2× 2 à coefficients dans C qui n’est pas diagonalisable sur C.

Exercice 7 (Centrale 2024). Soit n un entier naturel non nul et soit A et B dans Mn(C). Montrer que

χA(B) ∈ GLn(C)⇐⇒ SpC(A) ∩ SpC(B) = ∅.

Montrer que cette équivalence est fausse si on remplace C par R.

Exercice 8 On pose E = C∞(I,R), où I est un intervalle de longueur non nulle. On note D l’opérateur
de dérivation. Déterminer ses éléments propres.

Exercice 9 On pose E = K[X] et on note D l’opérateur de dérivation. Déterminer ses éléments propres.

Exercice 10 On note E le sous-espace de RN∗ constitué des suites indexées par N∗ ayant 0 pour
limite. On considère l’endomorphisme D de E défini par Du = (un+1 − un)n∈N∗ pour tout élément u
de E. Déterminer les éléments propres de D.

Exercice 11 Soit n dans N. Pour tout P dans Rn[X], on pose φ(P) = P− (X + 1)P′.
1. Montrer que φ ∈ L(Rn[X]).
2. Justifier que φ est diagonalisable.

Exercice 12 (CCINP). On pose A =

Å
5 3
1 3

ã
.

1. Montrer que A est diagonalisable sur R, et préciser une matrice inversible P telle que P−1AP
soit une matrice diagonale D.

2. Montrer que l’équation M2 + M = A d’inconnue M à chercher dans M2(R) est équivalente à
l’équation X2 +X = D d’inconnue X à chercher dans M2(R).

3. (a) Soit n dans N∗ et ∆ une matrice diagonale de Mn(K) dont les éléments diagonaux sont tous
distincts. On suppose qu’une matrice M commute avec ∆. Montrer que M est diagonale.

(b) En déduire toutes les solutions de l’équation M2 +M = A.

7.2 Les grands classiques

Exercice 13 (diagonalisation simultanée). Soit E un C-espace vectoriel de dimension finie et soit u, v
des endomorphismes de E tels que u ◦ v = v ◦ u.

1. Montrer que u et v ont un vecteur propre en commun.
2. On suppose que u et v sont diagonalisables. Montrer qu’il existe une base dans laquelle les

matrices de u et v sont diagonales. Traduire ce fait matriciellement.
3. Application. Si u et v commutent et sont diagonalisables, montrer que u+ v est diagonalisable.

Exercice 14 (matrices carrées de rang 1).

1. Trouver « sans calcul » les valeurs propres de la matrice

Ü
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

ê
, et montrer qu’elle est

diagonalisable. Même question avec la matrice J de Mn(R) (où n ⩾ 2) dont tous les termes sont
égaux à 1.
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2. Plus généralement, soit A dans Mn(R) une matrice de rang 1 (où n ⩾ 2). Montrer que A est

semblable à une matrice de la forme
Å

0 ∗
0 λ

ã
.

3. En déduire que A2 = tr(A) ·A.
4. Montrer que A est diagonalisable si et seulement si tr(A) ̸= 0.

Exercice 15 On pose E = C([0, 1],R). Pour tout f dans E, on note T(f) la fonction définie par
T(f)(0) = f(0) et

∀x ∈ ]0, 1], T(f)(x) =
1

x

∫ x

0
f(t)dt.

1. Montrer que T est bien un endomorphisme de E.
2. Déterminer ses éléments propres.

Exercice 16 (densité de GLn(K)) Soit n un entier naturel non nul.
1. Si AMn(K), montrer que pour tout entier k assez grand, A− 1

k In ∈ GLn(K).
2. En déduire que GLn(K) est dense dans Mn(K).

Exercice 17 (matrice compagnon). Si P = Xk +
k−1∑
i=0

aiX
i ∈ K[X] est un polynôme unitaire de degré

k, on pose

CP =


0 −a0
1 0 −a1

1
. . .

...
. . . 0

...
1 −ak−1

 ∈Mk(K).

1. Montrer que χ
CP

= P.

2. On suppose que P possède une racine λ dans K. Déterminer dimEλ(CP).
3. En déduire que CP est diagonalisable si et seulement si P est scindé à racines simples.

Exercice 18 Soit n un entier naturel non nul et A dans Mn(C).
1. Si (Ak)k∈N est bornée, montrer que les valeurs propres de A sont de module inférieur à 1.
2. Si (Ak)k∈N converge, montrer que sa limite est un projecteur. Qu’en conclure sur le spectre de

cette limite ?

Exercice 19 (une preuve du théorème de Cayley-Hamilton). Soit E unK-espace vectoriel de dimension
finie non nulle n et soit u dans L(E). On souhaite montrer que χu(u) est l’endomorphisme nul.

1. Soit x un vecteur non de E. Justifier l’existence du plus grand entier p tel que (x, u(x), . . . up−1(x))
soit une famille libre, que l’on notera Bx. On pose Vx = VectK(x, u(x), . . . , u

p−1(x)).
2. Vérifier que Vx est stable par u, et donner la matrice de l’endomorphisme induit ux sur Vx dans

la base Bx.
3. On note χx le polynôme caractéristique de ux. Prouver que χx(ux) = 0, et conclure.

7.3 Suites récurrentes et systèmes différentiels

Exercice 20 Résoudre le système différentiel
ß

x′ = 4x− 3y,
y′ = 2x− 3y.

Exercice 21 Résoudre l’équation différentielle y′′′−2y′′−y′+2y = 0 en la transformant en un système
différentiel linéaire d’ordre 1.

Exercice 22 Déterminer toutes les suites (an)n∈N ∈ RN telles que pour tout n ∈ N,

an+3 = 2an+2 + an+1 − 2an.
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7.4 Les exercices plus techniques

Exercice 23 On pose E = C([0, 1],R). Pour tout f dans E, on note T(f) la fonction définie par

∀x ∈ [0, 1], T(f)(x) =

∫ 1

0
min(x, t)f(t)dt.

Montrer que T est bien un endomorphisme de E et déterminer ses éléments propres.

Exercice 24 (Tube inter-concours). Soit n dans N∗ et A,B dans Mn(K) telles que AB− BA = A.
1. Montrer par récurrence que ∀k ∈ N∗, AkB− BAk = kAk.
2. En considérant l’endomorphisme Φ : X 7→ XB− BX de Mn(K), montrer que A est nilpotente.

Exercice 25 (sous-espaces stables et transposée) Soit E un K-espace vectoriel de dimension finie non
nulle n et f dans L(E). On note A la matrice de f dans une base Bde E. On considère enfin l’hyperplan
H d’équation a1x1 + . . .+ anxn = 0, et on pose C = (a1, . . . , an)

⊺.
1. Montrer que H est stable par f si et seulement si C est vecteur propre de A⊺.
2. Application 1. Montrer que tout endomorphisme d’un R-ev de dimension 3 possède au moins

un plan stable.

3. Application 2. Déterminer tous les sous-espaces stables de

Ñ
3 5 −1
0 1 −2
0 2 3

é
.

Exercice 26 (commutant d’un endomorphisme diagonalisable) E est un K-espace vectoriel de dimen-
sion finie non nulle n. Si f ∈ L(E), on pose

Γf = {g ∈ L(E) | f ◦ g = g ◦ f}.

Dans toute la suite on suppose que f est diagonalisable.
1. Vérifier que Γf est un sous-espace vectoriel de L(E).
2. Soit g dans L(E). Montrer que g ∈ Γf si et seulement si chaque sous-espace propre de f est

stable par g.
3. En déduire que dimΓf =

∑
λ∈Sp(f)

(mλ)
2, où mλ est la multiplicité de λ dans χ

f
.

Exercice 27 Une R-algèbre est un quadruplet (A,+,×, ·) où (A,+, ·) est un R-espace vectoriel et ×
une « multiplication » c’est-à-dire une application bilinéaire de A2 dans A. Cette algèbre est dite

— associative quand × est associative : ∀(a, b, c) ∈ A3, a× (b× c) = (a× b)× c.
— unitaire quand × possède un neutre (souvent noté 1A) : ∀a ∈ A, a× 1A = 1A × a = a.

De plus, une R-algèbre associative unitaire (A,+,×, ·) est dite à division quand tout élément non nul
y est inversible c’est-à-dire quand

∀a ∈ A \ {0A}, ∃b ∈ A, a× b = b× a = 1A.

Le but de cet exercice est de montrer qu’excepté (R,+,×, ·), toute R-algèbre à division de dimension
finie est nécessairement de dimension paire.

1. Donner un exemple de R-algèbre à division de dimension 2, puis une de dimension infinie. Si
n ∈ N∗, est-ce que (Mn(R),+,×, ·) est une R-algèbre à division ?

2. Soit (A,+,×, ·) une R-algèbre à division de dimension finie n. Imaginons un instant que n soit
impair.
— Soit a dans A \ {0}. Justifier que La : x 7→ a × x est un endomorphisme de A et montrer

qu’il a au moins une valeur propre.
— En déduire que A est isomorphe à R (en tant qu’algèbre : l’isomorphisme f : A→ R doit en

plus vérifier f(a× b) = f(a)× f(b) et f(1A) = 1) et conclure.
L’exercice 38 du TD n° 2 donne l’exemple d’une R-algèbre à division de dimension 4.
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Des limites et de la continuité dans les EVN 8
✓ Avoir compris que les limites et la continuité dans

les EVN sont une simple généralisation de ce que
l’on apprend dans un cours de 1re année pour les
fonctions de R dans R : la valeur absolue a été
remplacée par des normes.

✓ Savoir montrer qu’une partie est fermée (resp. ou-
verte) en l’écrivant comme l’image réciproque d’une
partie fermée (resp. ouverte) par une application
continue.

✓ Savoir montrer qu’une application est lipschit-
zienne.

✓ Savoir établir qu’une application linéaire est conti-
nue : la question ne se pose qu’en dimension infinie,
car en dimension finie elles sont toutes continues.

✓ Savoir ce qu’est une application multilinéaire et
une application polynomiale (en connaissant les
exemples de base).

♠ Croire qu’une fonction continue définie sur un
fermé-borné est toujours bornée : c’est faux en di-
mension infinie en général.

♠ Essayer de montrer qu’une application linéaire est
continue en revenant à la définition générale : c’est
extrêmement rare, on utilise presque toujours le cri-
tère lipschitzien « ∥f(x)∥ ⩽ k∥x∥ ».

♠ Pour une fonction « de deux variables » (x, y) 7→
f(x, y), confondre linéarité par rapport au couple
(x, y) et bilinéarité (linéarité par rapport à chacune
des deux variables).

8.1 Topologie dans les EVN

Exercice 1 Prouver par trois méthodes que Z est un fermé de R :

1. en prouvant que son complémentaire est un ouvert.

2. par la caractérisation séquentielle des fermés.

3. en voyant Z comme l’image réciproque d’un fermé par une application continue.

Exercice 2 Soit n dans N∗. L’espace Mn(R) est normé par une norme quelconque.

1. Montrer que GLn(R) est un ouvert de Mn(R) et que SLn(R) (matrices de déterminant 1) en
est un fermé.

2. Montrer, à l’aide de suites, que l’ensemble Dn(C) des matrices complexes n× n diagonalisables
sur C n’est ni fermé, ni ouvert.

3. Soit ∥ · ∥ une norme sous-multiplicative de Mn(R) : ∥AB∥ ⩽ ∥A∥∥B∥ pour toutes matrices A et
B dans Mn(R). Démontrer que ∥M∥ ⩾ 1 pour toute M dans SLn(R). On pourra raisonner par
l’absurde.

Exercice 3 Soit n dans N∗. On note L l’ensemble des couples (x, y) de Rn ×Rn formant une famille
liée.

1. Si x et y sont dans Rn, montrer que la famille (x, y) est libre si et seulement s’il existe i, j

distincts dans J1, nK tels que
∣∣∣∣xi xj
yi yj

∣∣∣∣ ̸= 0.

2. En déduire que L est un fermé de Rn ×Rn (normé par une norme quelconque).

Exercice 4 On note ℓ1 le sous-espace vectoriel de CN constitué des suites complexes (an)n∈N telles

que
∑
|an| converge. Si a ∈ ℓ1, on pose ∥a∥ =

∞∑
n=0
|an|.

1. Montrer que ∥ · ∥ est une norme sur ℓ1.

2. On pose A =

ß
a ∈ ℓ1 |

∞∑
n=0

an = 1

™
. L’ensemble A est-il ouvert ? Fermé ? Borné ?
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Exercice 5 (somme de deux fermés). On pose

A = {(x, y) ∈ R2 | xy = 1} et B = {0} ×R.

1. Montrer que A et B sont des fermés de R2.

2. Prouver que A+ B (défini comme étant {a+ b | (a, b) ∈ A× B}) n’est pas fermé.

Exercice 6 Soit E un K-espace vectoriel de dimension finie. Montrer que l’ensemble des projecteurs
de E est un fermé de L(E). Montrer qu’il n’est pas borné (on pourra raisonner matriciellement).

Exercice 7 (jauge de Minkowski).

8.2 Limites et continuité

Exercice 8 Montrer que f : R2 \{(0, 0)} → R définie par f(x, y) =
xy

x2 + y2
n’a pas de limite en (0, 0).

Exercice 9 En utilisant la caractérisation séquentielle, montrer que la fonction 1Q est discontinue en
tout point.

Exercice 10 Soit n dans N∗ et A dans Mn(R). On suppose que la suite (Ak)k∈N converge vers P.
Montrer que A et P commutent et que P est une matrice de projection.

Exercice 11 (Centrale-Supélec). Soit A une partie non vide d’un EVN (E, ∥ · ∥). Pour tout x dans E,
on note d(x,A) la borne inférieure de l’ensemble {∥x− a∥ : a ∈ A} : c’est la distance de x à A.

1. Montrer que l’application x 7→ d(x,A) est lipschitzienne (donc continue) de E dans R.

2. Si A est fermé, montrer que d(x,A) = 0⇐⇒ x ∈ A.

3. Donner un exemple de situation où d(x,A) = 0 et x /∈ A.

4. (∗) L’espace C([0, 1],R) est muni de la norme ∥ · ∥∞. On note A l’ensemble des f de C([0, 1],R)
telles que f(0) = 0 et

∫ 1
0 f ⩾ 1. Calculer d(0,A) et montrer que cette borne inférieure n’est pas

atteinte bien que A soit un fermé.

Exercice 12 Soit n dans N∗. On rappelle que GLn(K) est dense dans Mn(K).

1. Soit A et B dans Mn(K). Si A est inversible, montrer que χ
AB

= χ
BA

.

2. Montrer que cette égalité est vraie même si A n’est pas inversible.

Exercice 13 Soit n dans N∗. On rappelle (cf. TD n° 5, exercice 3) que pour toute matrice M de Mn(K)
il existe un unique polynôme πM unitaire, annulateur de M, de degré le plus petit possible parmi tous
les polynômes annulateurs non nuls de M.

1. Justifier que πM ∈ Kn[X].

2. Que vaut πM si M =

Ö
0 · · · 0 a
0 · · · 0 0
...

...
...

0 · · · 0 0

è
et a ∈ K∗ ? En déduire que Mn(K) −→ Kn[X]

M 7−→ πM
n’est

pas continue.

Exercice 14 (Centrale 2025). Soit I un intervalle. On pose C = {(x, y) ∈ I2 | x < y}.
1. Si F : R2 → R est une fonction continue, montrer que F⟨C⟩ est un intervalle.

2. En déduire que si f : I→ R est continue et injective, alors f est strictement monotone.

3. Exhiber une fonction f : R→ R injective mais pas strictement monotone.
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8.3 Applications linéaires continues

Exercice 15 On note δ la forme linéaire P 7→ P(0) de R[X]. On note N1, N2 et N3 les normes sur
R[X] définies par

N1(P) = max
n∈N
|an|, N2(P) =

∫ 1

0
|P(t)|dt, N3(P) = sup

t∈[0,1]
|P(t)|

(où an est le n-ième coefficient de P). Pour quelles normes δ est-elle continue ? Calculer sa constante
de Lipschitz 9δ9 le cas échéant.

Exercice 16 L’espace E = C([0, 1],R) est muni de la norme ∥ · ∥∞, et l’espace F = C1([0, 1],R) de la
norme N définie par N(f) = ∥f∥∞ + ∥f ′∥∞. On considère l’application Ψ : E→ F définie par

∀f ∈ E, Ψ(f) = x 7−→
∫ x

0
f(t) dt.

Montrer que Ψ est une application linéaire continue. Déterminer sa constante de Lipschitz 9Ψ9.

Exercice 17 (Grand classique). On note E l’espace E = C([0, 1],R) que l’on munit de la norme ∥ ·∥∞.
On considère l’application Φ : E→ R définie par

∀f ∈ E, Φ(f) =

∫ 1/2

0
f(t) dt−
∫ 1

1/2
f(t) dt.

1. Montrer que Φ est une application linéaire continue.

2. (∗) Déterminer 9Φ9 et montrer qu’il n’existe pas f dans E \ {0} tel que 9Φ9 = |Φ(f)|
∥f∥∞ .

3. Déduire de cette impossibilité que le théorème des bornes atteintes tel qu’énoncé dans le cours
n’est pas valable en dimension finie.

Exercice 18 (Centrale-Supélec 2022). Soit E et F des K-espaces vectoriels normés et u dans L(E,F).

1. On suppose que F = K : u est donc une forme linéaire.

(a) Si u est continue, expliquer pourquoi Ker(u) est une partie fermée de E.
(b) Réciproquement, on suppose Ker(u) fermé. On souhaite montrer que u est continue. Imagi-

nions que cela ne soit pas le cas.

i. Justifier l’existence d’une suite (xn)n∈N de la boule unité de E telle que lim
n→+∞

|u(xn)| =
+∞. En particulier, u(xn) ̸= 0 à partir d’un certain rang N.

ii. En considérant la suite
(
xN − u(xN)

u(xn)
xn

)
n⩾N

, trouver une absurdité.

2. On ne suppose plus que F = K. Montrer que la condition « Ker(u) fermé » n’implique pas
forcément la continuité de u.

Exercice 19 On pose E = C∞([0, 1],R) et on note D l’endomorphisme f 7→ f ′. Montrer que D n’est
pas continue, et ce quelle que soit la norme que l’on met sur E. Indication : utiliser (x 7→ enx)n∈N.

Exercice 20 (Centrale-Supélec). Si P ∈ R[X], on écrit P =
∞∑
k=0

akX
k et on pose

N1(P) = max
k∈N
|ak|, N2(P) =

∞∑
k=0

|ak|, N3(P) =

∫ 1

0
|P(t)|dt, N4(P) = sup

t∈[0,1]
|P(t)|.

On a déjà vu que cela définissait des normes sur R[X].

1. Montrer que la dérivation P 7→ P′ n’est pas continue pour N1, ni pour N2, N3, N4.
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2. (∗) Trouver des réels p0, p1, . . . de sorte que
∞∑
k=0

akX
k 7→

∞∑
k=0

pk|ak| soit une norme sur E et telle

que D soit continu.

Exercice 21 (Centrale-Supélec, écrits 2020) Pour tout réel s dans [0, 1], on note ks la fonction définie
sur [0, 1] par

∀t ∈ [0, 1], ks(t) =

ß
t(1− s) si t ⩽ s,
s(1− t) si t > s.

On note E l’espace C([0, 1],R) que l’on munit de ∥ · ∥∞, et pour tout f dans E, on désigne par T(f)
la fonction définie sur [0, 1] par

∀s ∈ [0, 1], T(f)(s) =

∫ 1

0
ks(t)f(t) dt.

1. Représenter la fonction ks dans un repère orthonormé, le réel s étant quelconque.

2. Montrer que T est un endomorphisme continu de E.

3. Déterminer 9T9.
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Des intégrales généralisées 9
✓ Être au point sur le cours de 1re année concernant

les intégrales de fonctions continues sur un segment.

✓ Savoir expliquer ce qu’est une fonction continue par
morceaux sur un segment, et sur un intervalle quel-
conque (attention, on a besoin des premières pour
expliquer les secondes).

✓ Être irréprochable sur les résultats tournant autour
du théorème fondamental du Calcul intégral (hypo-
thèses, conclusions...).

✓ Avoir compris que pour les fonctions continues par
morceaux qui ne sont pas continues, le changement
de variable doit — en plus d’être de classe C1 —
être strictement monotone.

✓ Savoir définir une intégrale généralisée sur un inter-
valle quelconque et connaître les intégrales généra-
lisées de référence.

✓ Connaître les intégrales faussement généralisées
classiques : celles de x ln(x) et de sin(x)

x
.

✓ Maîtriser l’outil des relations de comparaison (⩽, o,
O et ∼) pour prouver la convergence (ou l’absolue
convergence) d’intégrales généralisées.

✓ Savoir adapter l’intégration par parties et le chan-
gement de variable aux intégrales généralisées.

✓ Savoir définir les espaces L1 et L2 et connaître leur
structure.

♠ Dire qu’une fonction par morceaux sur un segment
c’est une fonction dont la restriction sur chaque in-
tervalle d’une subdivision est continue : il manque
le comportement aux bornes de ces intervalles.

♠ Croire que la composée de deux fonctions cpm est
une fonction cpm. Un contre-exemple a été donné.

♠ Oublier de préciser que f est continue pour écrire
∫

|f | = 0 =⇒ f = 0.

♠ Oublier de mettre les bornes dans le bon sens dans
l’inégalité triangulaire concernant

∣∣∣∫ ba f
∣∣∣.

♠ Faire des sommes de Riemann sur des intégrales
généralisées à des intervalles qui ne sont pas des
segments.

♠ Croire que la dérivée de x 7→
∫x

a
f(t) dt est x 7→

f(x)− f(a) : c’est l’horreur absolue !

♠ Calculer
∫ 1

0
xdx ou pire :

∫ b

a
1 dx, en calculant une

primitive. Le Calcul intégral est avant tout un cal-
cul d’aires, et on espère que vous connaissez celle
d’un triangle ou d’un rectangle.

♠ Présenter u et v′ pour faire une ipp : la bonne ré-
daction est de présenter u et v, dire qu’elles sont de
classe C1, et annoncer la formule.

♠ Oublier de préciser la constance du signe lors
des comparaison avec équivalence pour établir la
convergence d’intégrales généralisées.

♠ Faire des choses compliquées pour établir la conver-
gence d’une intégrale... sur un segment !

9.1 Exercices de base

Exercice 1 (autour du théorème fondamental du Calcul intégral).
1. Relever toutes les erreurs, en pointant la plus grave, qui apparaissent dans l’affirmation « Si

F(x) =
∫ x
a f(t) dt alors F′(x) = f(x) − f(a) » ? Corriger cette phrase en présentant tous les

objets et les hypothèses nécessaires sur iceux.
2. Soit f : R→ C continue. Si b : R→ R est dérivable, montrer que l’application

Φ : x 7−→
∫ b(x)

0
f(t) dt

est dérivable sur R, et exprimer Φ′(x) pour tout réel x.

3. Soit f : R → C continue. Si
∫+∞
0 f converge, montrer que la fonction x 7−→

∫ +∞

x
f(t) dt est

définie et dérivable sur R, et donner sa dérivée.

Exercice 2 Nature des intégrales généralisées suivantes.
∫ +∞

0
e−x3

dx,

∫ 1

0

ln(1 + t)

sin(t)
dt,

∫ +∞

0

sin2(t)

1 + t2
dt,

∫ +∞

1

t

t3 +
√
t− 1

dt,

∫ 1

0

dθ

sin(θ)
,

∫ 1

0
sin

Å
1

x

ã
dx,

∫ +∞

0

ds

ch(s)
,

∫ 2

1

dt√
t(2− t)

,

∫ +∞

0

eit√
t
dt,

∫ 1

0

ln(t)√
1− t2

dt,

∫ +∞

0
e−t ln(t) dt.
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Exercice 3 1. Justifier que si I est un intervalle borné, alors L2(I,K) ⊂ L1(I,K).

2. Montrer, si I = [1,+∞[, qu’il n’y a aucune relation d’inclusion entre L1(I,K) et L2(I,K).

Exercice 4 Discuter selon les valeurs du réel α la nature de
∫ +∞

0

x− sin(x)

xα
dx.

Exercice 5 Grâce à une intégration par parties, calculer
∫ +∞

0

dt

(1 + t2)2
.

Exercice 6 Grâce au changement de variable x = 2Arctan(t), calculer l’intégrale
∫

π

0

dx

2 + cos(x)
.

9.2 Les grands classiques

Exercice 7 (intégrales de Bertrand). Soit α et β des réels. Montrer que
∫ +∞

2

dx

xα lnβ(x)
converge ⇐⇒

[
α > 1 ou (α = 1 et β > 1)

]
.

En déduire que
∫

1
2

0

dx

xα| ln(x)|β
converge ⇐⇒

[
α < 1 ou (α = 1 et β > 1)

]
.

Exercice 8 (l’intégrale de Dirichlet).

1. Montrer que
∫ +∞

0

sin(x)

x
dx converge (on fera une intégration par parties sur [1,+∞[).

2. Montrer que
∫ +∞

0

sin(x)

x
dx n’est pas absolument convergente.

Indication : remarquer que | sin(x)| ⩾ sin2(x) = 1−cos(2x)
2 .

Exercice 9 (la fonction Gamma d’Euler).

1. Montrer que si Re(z) > 0, alors
∫ +∞

0
tz−1e−t dt est convergente. On note Γ(z) sa valeur.

2. Déterminer Γ(n) si n ∈ N∗ en se servant d’une intégration par parties.

3. Calculer Γ(12) en admettant que
∫+∞
0 e−x2

dx =
√
π

2 , puis Γ(n2 ) pour tout n dans N∗.

Exercice 10 Nature et calcul de
∫
π

2

0
ln(sin(x))dx. Indication : changement de variable x = 2t.

Exercice 11 Pour tout entier naturel k, montrer que
∫ 1

0
tk ln(t) dt est convergente et calculer sa valeur.

En déduire la valeur de
∫ 1

0

ln(t)

1− t
dt.

Exercice 12 Soit a > 0 et b > 0.

1. Étudier la convergence de I =

∫ +∞

0

e−at − e−bt

t
dt.

2. Après avoir déterminé lim
ε→0
ε>0

∫ bε

aε

e−t

t
dt et lim

x→+∞

∫ bx

ax

e−t

t
dt, calculer I.

Exercice 13 (∗) Pour tout n dans N∗, calculer
∫ +∞

0

dt

(1 + t2)n
.
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9.3 Les exercices plus techniques

Exercice 14 (Centrale). Déterminer les couples (α, β) dansR2 pour lesquels
∫ +∞

0

ln(1 + xα)

xβ
dx converge.

Les représenter dans un plan.

Exercice 15 (Centrale).

1. Montrer que f : x 7→ 1
x −

⌊
1
x

⌋
est continue par morceaux sur ]0, 1], et la représenter dans un

repère.

2. Nature et calcul de
∫ 1

0
f(t) dt.

Exercice 16 (Dirichlet via Riemann-Lebesgue). L’intégrale (dite de Dirichlet)
∫ +∞

0

sin(t)

t
dt est semi-

convergente. On se propose de trouver sa valeur.

1. Soit f : [a, b] → C une fonction de classe C1 et ω > 0. Grâce à une intégration par parties,

montrer que lim
n→+∞

∫ b

a
f(t)eiωnt dt = 0.

2. (∗) Montrer que le résultat subsiste pour les fonctions continues par morceaux. Utilisant la
densité des fonctions en escalier vue en MPSI. Ce résultat s’appelle le lemme de Riemann-
Lebesgue.

3. Pour tout entier naturel n, on pose

Jn =

∫
π

2

0

sin((2n+ 1)t)

sin(t)
dt et Kn =

∫
π

2

0

sin((2n+ 1)t)

t
dt.

Montrer que Jn et Kn sont des intégrales convergentes.

4. Montrer que φ : t 7→ 1
t −

1
sin(t) est prolongeable par continuité en 0.

5. Exprimer Kn − Jn à l’aide de la fonction φ et que (Jn)n∈N est une suite constante.

6. Conclure grâce au lemme de Riemann-Lebesgue.

Exercice 17 (∗) (École Polytechnique). Nature de
∫ +∞

1
| sin(x)|x dx.

Indication : découper suivant [nπ, (n + 1)π], observer que π ⩽ 4 et se servir des intégrales de Wallis :
∫
π

2

0
sinn(t) dt ∼

…
π

2n
.

Johann P. G. Lejeune Dirichlet

(1805-1859) Le sinus cardinal
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De la réduction (partie 2) 10
✓ Connaître le théorème spectral, et savoir caractéri-

ser les matrices symétriques dont les valeurs propres
sont toutes positives.

✓ Savoir que si P ∈ K[X] annule M ∈ Mn(K), alors
les valeurs de M sont des racines particulières de P.

✓ Savoir énoncer la CNS de diagonalisabilité qui fait
intervenir des polynômes annulateurs scindés à ra-
cines simples.

✓ Connaître la CNS de trigonalisabilité, qu’il ne faut
pas confondre avec la définition !

✓ Savoir que toute matrice (réelle ou complexe) est
trigonalisable sur C.

✓ Savoir trigonaliser les matrices 2× 2.
✓ Avoir pratiqué 3 ou 4 fois la trigonalisation d’une

matrice 3 × 3. C’est assez technique, et ça ne s’in-
vente pas le jour de la khôlle/du DS.

♠ Se mélanger les pinceaux et dire que si M est dia-
gonalisable, alors son polynôme caractéristique est
scindé à racines simples : il suffit de penser à In
(déjà diagonale...) pour s’apercevoir que c’est une
ânerie.

♠ Connaître les CNS de ce chapitre et oublier les dé-
finitions : être diagonalisable ce n’est pas avoir un
polynôme annulateur scindé à racines simples, c’est
être semblable à une matrice diagonale.

♠ Croire que trigonaliser c’est facile, un peu comme
diagonaliser en plus court : c’est tout le contraire !
Pratiquez, pratiquez, pratiquez !

♠ Croire qu’une matrice symétrique positive est une
matrice symétrique avec des coefficients positifs.
C’est un brin plus compliqué que ça.

10.1 Exercices de base

Exercice 1 Expliquer pourquoi toute matrice triangulaire inférieure est semblable à une matrice tri-
angulaire supérieure.

Exercice 2 1. Montrer que

Ñ
2 −1 −1
2 1 −2
3 −1 −2

é
n’est pas diagonalisable.

2. Montrer qu’elle est trigonalisable sur R, et la réduire.

3. Mêmes questions avec

Ñ
0 1 1
−1 1 1
−1 1 2

é
.

Exercice 3 Soit M une matrice de M2(C) qui n’est pas diagonalisable. Montrer qu’il existe un complexe

a tel que M est semblable à
Å
a 1
0 a

ã
. Est-ce vrai dans M2(R) ?

Exercice 4 (Centrale-Supélec, extrait). Soit E =

ßÅ
−2x+ 3y −6x+ 6y
x− y 3x− 2y

ã
: (x, y) ∈ R2

™
. Montrer

que E est plan vectoriel de M2(R) constitué de matrices diagonalisables sur R.

Exercice 5 1. Déterminer les réels a tels que A =

Ñ
2 1 −2
1 a −1
1 1 −1

é
ne soit pas diagonalisable sur R.

2. Si a est un tel réel, trouver P dans GL3(R) telle que P−1AP soit triangulaire supérieure.

Exercice 6 (Centrale 2024). Soit N le sous-espace vectoriel engendré par les matrices nilpotentes de
M2(R).

1. Soit M dans M2(R). Montrer que tr(M) = det(M) = 0 si et seulement si M est nilpotente.

2. Montrer que l’application (x, y, z) 7→
Å
x y
z −x

ã
est un isomorphisme de R3 sur N.
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10.2 Matrices symétriques positives

Exercice 7 Soit n dans N∗ et M dans Mn(R). Montrer que M ∈ S+
n (R) si et seulement s’il existe A

dans Mn(R) telle que M = A⊺ ×A.

Exercice 8 (CCINP). Si (p, q) ∈ (N∗)2, on pose n = p + q. On considère A1 dans Mp(R), A2 dans
Mq(R) et B dans Mp,q(R) et on pose

A =

Ç
A1 B

B⊺ A2

å
.

On suppose que A ∈ S++
n (R). Justifier que A1 et A2 sont symétriques définies positives.

Exercice 9 Soit n dans N∗ et M dans S+
n (R). Montrer que lim

k→∞
tr(Mk)

1
k = maxSpR(M).

Exercice 10 (Centrale 2023). Soit n dans N∗ et soit A et B dans S+
n (R). On suppose A ̸= 0.

1. Montrer que ∀i ∈ J1, nK, [A]i,i ⩾ 0. Montrer de plus que ∃i0 ∈ J1, nK, ai0,i0 > 0.
2. Démontrer que tr(AB) ⩾ 0.

Exercice 11 (Mines-Ponts). Soit n dans N∗, A dans S+
n (R) et B dans Mn(R). On suppose que A et

B anticommutent, c’est-à-dire AB = −BA. Montrer que AB = BA = 0. Indication. Traiter d’abord le
cas où A est diagonale.

Exercice 12 (Racines carrées dans S+
n (R)). Soit n dans N∗ et A dans S+

n (R).
1. Montrer qu’il existe R dans S+

n (R) telle que R2 = A.
2. On veut mieux faire : on considérant un polynôme interpolant les points (λ,

√
λ) quand λ décrit

SpR(A), montrer que R peut être choisie dans R[A].
3. Soit R′ dans S+

n (R) telle que (R′)2 = A. Montrer que R et R′ commutent, puis que R = R′.

Exercice 13 Écrire les expressions suivantes sous la forme X⊺SX avec S symétrique et X matrice
colonne. Reconnaître celles qui gardent un signe constant.

1. q1(x, y) = x2 + xy + y2. Tracer l’ensemble E1 : q1(x, y) = 1.
2. q2(x, y) = −3x2 + 4xy + y2. Tracer l’ensemble E2 : q2(x, y) = 1.
3. q3(x, y, z) = 2x2 + 2y2 + z2 − 2yz + 2xz. Tracer l’ensemble E3 : q3(x, y, z) = 1.

Exercice 14 Grâce à un développement limité à l’ordre 2, trouver la nature des points critiques des
fonctions suivantes.

f : (x, y) 7−→ x3 + 3xy2 − 15x− 12y et g : (x, y) 7−→ x3 + y3 − 3xy.

Exercice 15 Soit n dans N∗. On définit une relation binaire ≺ sur Mn(R) par

∀(A,B) ∈Mn(R)
2, A ≺ B⇐⇒ B−A ∈ S+

n (R).

Montrer que ≺ est une relation d’ordre sur Mn(R). Est-elle totale ?

Exercice 16 (Rayon spectral). Soit n dans N∗. Si A ∈Mn(R), on pose ρ(A) = max{|λ| | λ ∈ SpC(A)}.
1. Justifier la bonne définition de ρ(A) quelle que soit la matrice A dans Mn(R).
2. On considère l’endomorphisme canoniquement associé uA ∈ L(Mn,1(R)), et on munit Mn,1(R)

de la norme euclidienne ∥ · ∥2 définie par ∥X∥2 =
√
X⊺X. Démontrer que 9uA9 =

√
ρ(A⊺A).

Rappel. On note 9uA9 la constante de Lipschitz de uA, c’est-à-dire sup
X ̸=0

∥AX∥2
∥X∥2 .

Indication. Remarquer que A⊺A ∈ S+
n (R). Quelles sont ses valeurs propres en fonction de celles de

A ?

42



Exercice 17 (Mines-Ponts). Si n ∈ N∗, on identifie Rn avec Mn,1(R), et donc M1,1(R) avec R.
On considère une matrice A de S++

n (R) et un vecteur B dans Rn. On pose, pour tout X dans Rn,
f(X) = 1

2X
⊺AX− B⊺X.

1. Calculer le gradient de f . Montrer que f admet un point critique et qu’il est unique.
2. Montrer que f admet un minimum, et le calculer.

10.3 Les grands classiques

Exercice 18 Soit n dans N∗ et M dans Mn(R)

1. Si M est symétrique, démontrer que SpC(M) ⊂ R.
2. Si M est antisymétrique, démontrer que SpC(M) ⊂ iR.
3. Si M est antisymétrique et inversible, justifier que n est pair, que M2 est diagonalisable sur R,

puis que M l’est sur C.
4. Donner un exemple de matrice antisymétrique réelle non diagonalisable sur R.

Exercice 19 Soit n un entier au moins égal à 2.
1. Si une matrice M de Mn(C) est telle que Mk = In pour un certain entier non nul k, montrer que

M est diagonalisable.
2. Montrer que ce résultat est faux pour les matrices réelles, par exemple si n = 2.
3. Soit k dans N∗ et M dans GLn(C) tels que Mk soit diagonalisable. Montrer que M l’est aussi.

On commencera par montrer que Mk possède un polynôme annulateur P à racines simples tel
que P(0) ̸= 0.

4. Montrer que ce résultat est faux si M n’est pas inversible.

Exercice 20 (Centrale-Supélec). Soit n dans N∗ et A dans Mn(C). On note LA l’application de Mn(C)
dans Mn(C) définie par LA(M) = AM (c’est la multiplication à gauche par A).

1. Montrer que A est inversible si et seulement si LA est bijective.
2. Montrer que A et LA ont même spectre.
3. Après avoir calculé (LA)

k pour tout entier k, montrer que A est diagonalisable si et seulement
si LA l’est.

Exercice 21 (Art & Métiers). Soit n un entier au moins égal à 2. On considère l’application

Ψ :
Mn(C) −→ Mn(C)

M 7−→ M− tr(M)In.

1. Détailler Ψ ◦Ψ et trouver un polynôme annulateur de Ψ.
2. Montrer que Ψ est diagonalisable, déterminer ses éléments propres et en déduire tr(Ψ) et det(Ψ).

Exercice 22 Soit n dans N∗. Déterminer les éléments A de Mn(K) tels que
Å

A A

O A

ã
soit diagona-

lisable. On commencera par calculer les puissances de cette matrice.

Exercice 23 Soit n dans N∗ et M dans Mn(C). On suppose que tr(Mk) = 0 pour tout k dans N∗.
Montrer que M est nilpotente.

Exercice 24 (matrices circulantes). Soit n un entier au moins égal à 2. On note J la matrice de format
n× n suivante : 

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 1
1 0 0 . . . 0

 .
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1. À l’aide de l’endomorphismes associé, calculer Jn et en déduire que J est diagonalisable sur C.
2. Déterminer le spectre complexe et les espaces propres de J.
3. Si a0, a1, . . . , an−1 sont des complexes, calculer le déterminant de la matrice

a0 a2 · · · an−1

an−1 a0 · · · an−2

...
...

...
a1 a2 · · · a0

 .

Indication : on pourra exprimer cette matrice comme un polynôme en J.

10.4 Exercices plus techniques

Exercice 25 (Centrale-Supélec, extrait). On pose A =

Å
α 0
0 β

ã
et B =

Å
a b
c d

ã
dans M2(C), et on

suppose que α ̸= β. Si B+ zA est diagonalisable pour tout complexe z, montrer que B est diagonale.

Exercice 26 (Centrale-Supélec).
1. Soit M dans M2(R) telle que SpR(M) ⊂ {0}. Est-ce que M est forcément nilpotente ?
2. Soit M dans M2(R) telle que SpR(M) = {0}. Est-ce que M est forcément nilpotente ?
3. Montrer que toute matrice de M2(R) est la somme de matrices dont le spectre est inclus dans
{0}.

Exercice 27 (Centrale-Supélec, extrait). Soit n dans N∗ et A dans Mn(K). On appelle classe de
similitude de A l’ensemble des matrices qui sont semblables à A : c’est {P−1AP | P ∈ GLn(K)}.

1. Si λ ∈ K, quelle est la classe de similitude d’une matrice de la forme λIn ?
2. On suppose que A est diagonalisable. Montrer que sa classe de similitude est une partie fermée

de Mn(K).
3. Montrer que quelle que soit A, la classe de similitude de A n’est jamais une partie ouverte de

Mn(K). Indication : un sous-espace affine d’un EVN E, distinct de E, n’est jamais une partie
ouverte.

Exercice 28 (caractérisation topologique de la nilpotence, École polytechnique). Soit n un entier au
moins égal à 2.

1. Soit A dans Mn(C). Pour tout ε > 0, montrer qu’il existe Pε dans GLn(C) telle que P−1
ε

APε
soit une triangulaire supérieure T = (ti,j) 1⩽i⩽n

1⩽j⩽n
où |ti,j | ⩽ ε pour tous i < j dans J1, nK.

2. Pourquoi ne peut-on rien imposer aux coefficients ti,i ?
3. En déduire que A est nilpotente si et seulement si la matrice nulle est adhérente à la classe de

similitude de A, c’est-à-dire à l’ensemble {P−1AP | P ∈ GLn(C)}.

Exercice 29 (caractérisation topologique de la diagonalisabilité, École polytechnique). Soit n dans N∗

et A dans Mn(C). On note ΣC(A) sa classe de similitude : {P−1AP | P ∈ GLn(C)}.
1. Montrer que si A est diagonalisable, alors ΣC(A) est fermée.
2. Grâce à l’exercice précédent, montrer la réciproque.
3. Cette caractérisation est fausse dans R, et nous allons le monter.

(a) Soit A et B dans Mn(R) semblables sur C, c’est-à-dire telles qu’il existe P dans GLn(C) avec
A = PBP−1. Montrer qu’elles sont semblables sur R. Indication. On posera P = Q+ iR avec
Q,R réelles et on utilisera la fonction polynôme x 7→ det(Q + xR).

(b) Montrer que A =

Å
0 −1
1 0

ã
est telle que ΣR(A) est fermée mais n’est pourtant pas diagona-

lisable sur R.
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Exercice 30 (endomorphismes semi-simples, Centrale-Supélec 2024). Soit E un K-espace vectoriel de
dimension finie (non nulle). Un endomorphisme u de E est dit semi-simple quand tout sous-espace
vectoriel stable par u possède un supplémentaire stable par u.

Si n ∈ N∗ et si M ∈ Mn(K), on dit que M est semi-simple si l’endomorphisme canoniquement
associé à M est semi-simple.

1. Montrer que
Å
0 −1
1 0

ã
est semi-simple, mais pas

Å
0 1
0 0

ã
.

2. On suppose dorénavant K = C.

(a) Soit u un endomorphisme diagonalisable. Montrer que u est semi-simple. On pourra justi-
fier la complétion d’une famille libre quelconque par des vecteurs propres de u pour qu’elle
devienne une base de tout l’espace.

(b) On suppose que u est semi-simple et on pose F =
⊕

λ∈SpC(u)
Eλ(u). Après avoir justifié que F

était stable par u et considéré un certain endomorphisme induit, montrer que u est diagona-
lisable.

3. Si K = R, un endomorphisme semi-simple est-il toujours diagonalisable ?
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Des suites et des séries de fonctions 11
✓ Avoir compris les différences entre convergence uni-

forme et convergence simple, et savoir illustrer gra-
phiquement une convergence uniforme.

✓ Savoir montrer qu’une convergence n’est pas uni-
forme par plusieurs moyens (cf. méthodes).

✓ Savoir établir la convergence normale d’une série de
fonctions.

✓ Savoir intervertir limites, intégrales, dérivées,
sommes avec les hypothèses idoines.

✓ Utiliser à bon escient la convergence uniforme (ou
normale) sur tout segment, pour prouver une conti-
nuité par exemple.

♠ Croire que la convergence sur tout segment entraîne
la convergence uniforme globale.

♠ Essayer de montrer qu’une suite de fonctions
converge normalement : ce mode de convergence est
propre aux séries de fonctions.

♠ Oublier de regarder en premier la convergence nor-
male d’une série de fonctions : c’est bien plus facile
que la convergence uniforme.

♠ Ne pas penser à établir une convergence uni-
forme/normale sur tout segment, voire sur toute
partie de la forme [a,+∞[, pour montrer une conti-
nuité par exemple.

11.1 Exercices de base

Exercice 1 Pour chaque entier naturel non nul n, on note fn la fonction [0, π2 ] −→ R

t 7−→ nα sinn(t) cos(t)
,

où α est un paramètre réel.
1. Montrer que, quel que soit α, (fn)n∈N∗ converge simplement vers la fonction nulle.
2. Montrer qu’il y a convergence uniforme si et seulement si α < 1

2 . Indication : on pourra étudier
les variations de fn.

3. Caractériser les réels α tels que
∑

fn converge normalement sur [0, π2 ].

Exercice 2 Pour tout n dans N∗ et tout réel x, on pose fn(x) =

ß
x2 sin

(
1
nx

)
si x ̸= 0,

0 si x = 0.

1. Étudier la convergence simple puis uniforme de (fn)n∈N∗ sur R.
2. Si a ∈ R∗

+, étudier la convergence uniforme de (fn)n∈N∗ sur [−a, a].

Exercice 3 Étudier la convergence uniforme sur R+ de la suite (fn)n∈N∗ où, pour tout entier naturel
non nul n, fn est la fonction x 7→ x

n(1+xn) .

Exercice 4 Pour tout entier n, on pose fn = x 7→ e−nx sin(nx), définie sur R+.
1. Étudier la convergence simple de (fn)n∈N sur R+, puis la convergence uniforme sur [a,+∞[, où

a > 0.
2. La CVU sur tous les intervalles [a,+∞[ quand a > 0 entraîne-t-elle la CVU sur ]0,+∞[ ?

Exercice 5 (pas d’interversion). Pour tous n dans N \ {0, 1} et x dans [0, 1], on pose

fn(x) =


n2x si 0 ⩽ x < 1

n

−n2x+ 2n si 1
n ⩽ x < 2

n

0 si 2
n ⩽ x ⩽ 1.

1. Représenter fn pour quelques valeurs de n, et justifier que fn est continue pour tout n.
2. Montrer que (fn)n∈N converge simplement sur [0, 1].
3. Montrer que l’interversion limite-intégrale n’a pas lieu. Qu’en conclure ?
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Exercice 6 Pour chaque n dans N∗, on pose fn = x 7→ 1
x2+n2 . Montrer que la série de fonctions

∑
fn

converge simplement vers une fonction dérivable sur R.

Exercice 7 (une hypothèse manquante). Pour chaque n dans N∗, on note fn la fonction x 7→
»
x2 + 1

n ,
définie sur R.

Montrer que chaque fn est de classe C1 sur R, que (fn)n∈N∗ converge uniformément sur R vers une
fonction f qui n’est pas de classe C1 sur R.

Exercice 8 (CCINP.) Justifier qu’on définit une fonction continue sur [0, 1] en posant

ψ(x) =
∞∑
n=2

Å
1

n− x
− 1

n+ x

ã
,

puis calculer
∫ 1

0
ψ(x)dx.

Exercice 9 Pour chaque entier n, on pose fn = x 7→ Arctan
(
n+x
x

)
, définie sur R∗

+.
1. Étudier la limite simple de la suite de fonctions (fn)n∈N.
2. Grâce au théorème de la double limite, prouver que la convergence n’est pas uniforme sur R∗

+.
3. Montrer qu’il y a convergence uniforme sur ]0,m] où m > 0 est quelconque.

Exercice 10 (Centrale 2023). Soit I un intervalle et (fn)n∈N une suite de fonctions continues sur I
à valeurs dans R convergeant uniformément localement vers une fonction f : I → K. Soit aussi deux
suites (un)n∈N et (vn)n∈N à valeurs dans I convergeant respectivement vers ℓ et ℓ′, deux éléments de I.
Démontrer que

lim
n→∞

∫ vn

un

fn(t)dt =

∫ ℓ′

ℓ
f(t)dt.

11.2 Les grands classiques

Exercice 11 (convergence d’un produit). Soit (fn)n∈N et (gn)n∈N deux suites de fonctions de I dans
K.

1. Si (fn)n∈N et (gn)n∈N convergent simplement sur I vers f et g respectivement , montrer que
(fngn)n∈N converge simplement vers fg.

2. Si (fn)n∈N et (gn)n∈N convergent uniformément sur I, montrer que ce n’est pas forcément le cas
pour (fngn)n∈N. Indication : prendre fn : x 7→ 1

n et gn : x 7→ x sur I = R.
3. Si (fn)n∈N et (gn)n∈N convergent uniformément sur I vers f et g respectivement et si f et g

sont bornées sur I, montrer que (fngn)n∈N converge uniformément sur I vers fg.

Exercice 12 Soit (Pn)n∈N une suite de fonctions polynomiales, définies sur R tout entier. On suppose
que (Pn)n∈N converge uniformément sur R vers une fonction f .

1. Montrer qu’il existe un entier N tel que ∀n ⩾ N, ∀x ∈ R, |PN(x)− Pn(x)| ⩽ 1.
2. En déduire que f est nécessairement polynomiale.

Remarque. Ce résultat est faux sur un segment : on peut montrer que toute fonction continue sur un
segment est la limite uniforme d’une suite de fonctions polynomiale (théorème dû à Weierstrass).

Exercice 13 On admet que sur un segment, toute fonction continue est limite uniforme de fonctions
polynomiales (cf. exercice précédent). Soit f : [a, b] → R continue telle que

∫ b
a t

nf(t)dt = 0 pour tout
entier n. Montrer que f = 0.

Exercice 14 Soit (Pn)n∈N une suite de fonctions polynomiales dont tous les degrés sont majorés par
un entier d, toutes définies sur un intervalle I quelconque (mais de longueur non nulle). On suppose
que (Pn)n∈N converge simplement sur I vers une fonction f .
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1. Montrer que f est une fonction polynomiale de degré au plus d. On pourra utiliser les polynômes
interpolateurs de Lagrange.

2. Prouver que la convergence de (Pn)n∈N vers f est en fait uniforme sur tout segment.
3. On suppose que I n’est pas borné et que (Pn)n∈N converge uniformément sur I. Montrer qu’il

existe une suite réelle (cn)n∈N convergeant vers 0 telle que l’on ait Pn = f + cn pour tout n
suffisamment grand.

11.3 Exercices plus techniques

Exercice 15 Pour tout (n, x) dans N∗ ×R+, on pose fn(x) =
(
1 + x

n

)n et gn(x) =
(
1 + x

n

)−n.
1. Montrer que (fn)n∈N converge simplement vers f : x 7→ ex et que (gn)n∈N converge simplement

vers g : x 7→ e−x.
2. Montrer que (fn)n∈N converge uniformément localement sur R+ mais pas globalement.
3. En se servant de l’inégalité t − t2

2 ⩽ ln(1 + t) ⩽ t valable pour tout réel positif t, montrer que
(gn)n∈N converge uniformément sur tout intervalle de la forme [0, a], où a > 0.

4. On souhaite montrer que (gn)n∈N converge uniformément sur R+. Pour ce faire, on considère
ε > 0 quelconque.
(a) Justifier qu’il existe a > 0 tel que e−a ⩽ ε

3 .
(b) Montrer alors il existe un entier N1 tel que ∀n ⩾ N1, ∥gn − g∥∞,[a,+∞[ ⩽

2ε
3 .

(c) En utilisant 3., montrer qu’il existe un entier N2 tel que ∀n ⩾ N2, ∥gn − g∥∞,[0,a] ⩽
ε

3 et
conclure.

Exercice 16 Pour x > 0, on pose S(x) =
∞∑
n=0

(−1)n

n+ x
.

1. Justifier que S est définie et de classe C1 sur R∗
+.

2. Préciser le sens de variation de S.
3. Établir que ∀x ∈ R∗

+, S(x+ 1) + S(x) = 1
x .

4. En déduire un équivalent simple de S en 0, puis en +∞.

Exercice 17 (CentraleSupélec). On admet que pour tout z ∈ C, ez =
∞∑
n=0

zn

n! (série absolument conver-

gente). Le but est de montrer que

∀z ∈ C, ez = lim
p→∞

Å
1 +

zp

p

ãp

.

1. Démontrer ce résultat quand z ∈ R en utilisant la fonction ln.
2. Développer

Ä
1 + zp

p

äp
par la formule du binôme.

3. On fixe z ∈ C. Pour tout k ∈ N et tout x ∈ R+, on pose

fk(x) =
x(x− 1) . . . (x− k + 1)

k!

zk

xk
si x ⩾ k

et 0 sinon. Étudier la limite de (fk(p))k∈N pour chaque p ∈ N fixé.
4. Établir la convergence normale de

∑
fk sur R+ et conclure par le théorème de la double limite.

Exercice 18 (CentraleSupélec, extrait). On considère la fonction

f :
[0, 1] −→ [0, 1]

x 7−→ 2x(1− x)

et on pose fn = f ◦ . . . ◦ f (n fois) pour tout n ∈ N∗.
1. Étudier la convergence simple sur [0, 1] de (fn)n∈N∗ , et justifier qu’il n’y a pas convergence

uniforme sur [0, 1].
2. Prouver néanmoins qu’il y a convergence uniforme sur tout segment inclus dans ]0, 1[.
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Des espaces probabilisés 12
✓ Savoir montrer qu’un ensemble est dénombrable en

construisant une bijection de N vers cet ensemble.
✓ Connaître les ensembles dénombrables usuels : N∗,
Z, Q et savoir que R n’est pas dénombrable (donc
C non plus, il va sans dire...)

✓ Savoir qu’une réunion dénombrable d’ensembles dé-
nombrables est dénombrable.

✓ Savoir définir ce qu’est une tribu sur un ensemble
non vide.

✓ Savoir prouver qu’une partie est un événement en
utilisant des intersections/réunions dénombrables
et des complémentaires.

✓ Avoir compris que sur un univers dénombrable, on
peut identifier les mesures de probabilité avec une
suite (pn) de réels positifs de somme égale à 1.

✓ Bien maîtriser les propriétés fondamentales des pro-
babilités qui sont nouvelles cette année : continuité
croissante ou décroissante et sous-additivité.

✓ Connaître le langage des probabilités condition-
nelles, des événements indépendants, des systèmes
complets dénombrables.

✓ Savoir utiliser la formule de Bayes après avoir dé-
crit un système complet dénombrable d’événements
adapté au problème.

♠ Ne pas avoir compris ce que signifie T ⊂ P(Ω).
Les éléments de T sont des parties de Ω, pas des
éléments de Ω !

♠ Croire qu’une mesure de probabilité est une fonc-
tion de Ω dans [0, 1] : c’est une fonction de T (une
tribu) dans [0, 1].

♠ Confondre « incompatibles » et « indépendants ».
♠ Croire que l’indépendance mutuelle d’événements

A1, . . . ,An se traduit par P(A1 ∩ . . . ∩ An) =
P(A1) . . .P(An) : il faut en plus considérer toutes
les sous-familles finies quelconques de la liste
A1, . . . ,An.

♠ Croire que « A sachant B » est un événement. Cette
expression est trompeuse car on parle de la « pro-
babilité de A sachant B ». Il faut avoir compris que
cela désigne la probabilité de A pour une mesure de
probabilité notée PB. En aucun cas l’écriture (très
dangereuse) P(A | B) signifie que l’on prend la pro-
babilité d’un soi-disant événement « A | B ».

12.1 Ensembles dénombrables. Tribus

Exercice 1 Déterminer toutes les tribus possibles sur l’ensemble {a, b, c}.

Exercice 2 Expliquer pourquoi R peut-être considéré comme un Q-espace vectoriel, puis justifier que
la dimension de cet espace n’est pas de dimension finie.

Exercice 3 Soit f : R→ R une fonction croissante.
1. Quel théorème justifie l’existence d’une limite à gauche et à droite de f en tout point ?
2. On note E l’ensemble des points de discontinuité de f . Montrer qu’il existe une injection de E

dans Q. Qu’en déduire sur E ?

Exercice 4 (CentraleSupélec, extrait). On appelle nombre algébrique (sur Q) tout nombre complexe
qui est racine d’un polynôme à coefficients dans Q.

1. Expliquer pourquoi les nombres 2
3 , i,

2025
√
2, et

√
2 + 3
√
5 sont algébriques.

2. On note An l’ensemble des nombres algébriques qui sont racines des polynômes de Qn[X] \ {0}.
Montrer que An est dénombrable, et en déduire que l’ensemble des nombres algébriques est
dénombrable.

3. En déduire alors qu’il existe (beaucoup) de nombres transcendants, c’est-à-dire non algébriques.

Exercice 5 Soit E un ensemble quelconque.
1. Rappeler pourquoi {0, 1}N n’est pas dénombrable. En déduire que l’ensemble NN des suites

d’entiers n’est pas dénombrable.
2. Montrer que l’ensemble P∗(N) des parties finies de N est dénombrable.
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3. En déduire que l’ensemble des suites strictement croissantes d’entiers naturels n’est pas dénom-
brable.

Exercice 6 (une application topologique de la dénombrabilité). Soit (E, ∥ · ∥) un espace normé. Une
partie A de E est dite connexe par arcs quand pour chaque couple (a, b) de A2, il existe un arc continu
γ : [0, 1]→ A tel que γ(0) = a et γ(1) = b.

1. Démontrer que C∗ est connexe par arcs dans l’espace normé (C, | · |), mais que R∗ n’est pas
connexe par arcs dans (R, | · |).

2. On souhaite montrer que si D est une partie dénombrable de C, alors C \ D est connexe par
arcs.
(a) Soit z dans C. Justifier qu’il existe une infinité indénombrable de droites tracées dans C,

passant par z.
(b) En déduire qu’il existe au moins une droite passant par z ne rencontrant pas D. On pourra

écrire D sous la forme {zn : n ∈ N} et raisonner par l’absurde.
(c) Conclure.

3. Une application. Si n ∈ N∗, montrer que GLn(C) est connexe par arcs. Si (A,B) ∈ GLn(C)
2,

on pourra considérer z 7→ det((1− z)A + zB).

12.2 Familles sommables

Exercice 7 Montrer que la famille
Ä

1
q2

ä
q∈Q∩[1,+∞[

n’est pas sommable.On pourra s’intéresser aux
rationnels compris entre 1 et 2 : combien en y a-t-il ?

Exercice 8 La fonction zêta d’Euler-Riemann est donnée par ζ(x) =
∞∑
n=1

1
nx pour tout x > 1.

1. Grâce au théorème de Fubini, démontrer que
∞∑
k=2

(ζ(k)− 1) = 1.

2. Retrouver le fait que lim
+∞
ζ = 1.

Exercice 9 Soit α > 1. Pour tout entier n, on pose Rn(α) =
∞∑

k=n+1

1
kα (reste d’une série de Riemann).

1. Donner un équivalent de (Rn(α))n∈N grâce à une comparaison série-intégrale. En déduire les
valeurs de α pour lesquelles cette famille est sommable.

2. Pour de telles valeurs de α, montrer que
∞∑
n=0

Rn(α) =
∞∑
n=1

1
nα−1 .

Exercice 10 (Mines-Ponts) On rappelle que la fonction zêta est définie sur ]1,+∞[ par ζ(x) =
∞∑
n=1

1
nx

et que la suite
(
1 + 1

2 + . . .+ 1
n − ln(n)

)
n∈N∗ est convergente : on note γ sa limite (constante d’Euler).

Démontrer que γ = 1 +

∞∑
n=2

Å
1

n
+ ln

Å
1− 1

n

ãã
puis que γ = 1−

∞∑
k=2

ζ(k)− 1

k
.

12.3 Exercices de base

Exercice 11 (la question du chevalier de Méré (1607-1684)). Qu’est-ce qui est le plus probable :
obtenir au moins un 6 en lançant 4 fois un dé, ou bien obtenir au moins un double 6 en lançant 24 fois
deux dés ?

Exercice 12 Soit P une mesure de probabilité sur (N,P(N)). Montrer que lim
n→∞

P({n}) = 0.

Exercice 13 1. Montrer que l’on peut définir une mesure de probabilité P sur (N,P(N)) en
imposant P({n}) = 1

2n+1 pour tout entier n.
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2. Si k ∈ N, quelle est la probabilité qu’un entier choisi au hasard soit un multiple de k ?

Exercice 14 On lance un dé à 6 faces équilibré et on s’arrête à l’obtention du premier 6. On admet
que l’univers J1, 6KN∗ est muni d’une structure probabilisée (A,P) telle que pour tout n ∈ N∗, et tout
(ω1, . . . ,ωn) ∈ J1, 6Kn, la partie {ω1} × . . . {ωn} × J1, 6KJn+1,+∞J est un événement de probabilité 1

6n .

1. Montrer que « s’arrêter de jouer un jour » est un événement et qu’il est presque sûr.

2. Quelle est la probabilité, une fois le jeu fini, de n’avoir obtenu que des nombres pairs ?

Exercice 15 (introduction aux chaînes de Markov). Au pays des Bisounours, il fait souvent un temps
ensoleillé. De plus,

• s’il fait beau, il y a 80 % de chance qu’il fasse encore beau le lendemain.

• s’il ne fait pas beau, il y a 30 % de chance qu’il fasse encore moche le lendemain.

Pour chaque entier n, on note pn la probabilité qu’il fasse beau le ne jour au pays des Bisounours. On
schématise la situation par un graphe pondéré :

où B et M sont les deux états (Beau et Moche).

1. Montrer que (pn)n∈N est une suite arithmético-géométrique.

2. Si on décide d’aller, un jour lointain, au pays des Bisounours, quelle chance a-t-on d’avoir du
beau temps ?

Exercice 16 Vous venez de passer un test pour le dépistage d’une maladie rare, qui atteint 3 % de
la population. Hélas le test est positif et le médecin vous dit : « Chez les personnes atteintes, le test
est positif dans 90 % des cas ; chez les sujets sains, il est négatif dans 95 % des cas ». Quelle est la
probabilité que vous ayez vraiment cette maladie ?

Exercice 17 La malculopathie est un mal qu’un professeur de mathématiques peut dépister en donnant
une page de calcul à ses étudiants. On a constaté qu’un étudiant atteint de ce mal fait plus de trois
erreurs dans cette page dans 99 % des cas. Un étudiant non atteint fait plus de trois fautes dans 1 %
des cas. On note p la probabilité qu’un individu soit atteint de malculopathie. Le test sera jugé fiable
si au moins 99 % des personnes qui font plus de trois fautes sont effectivement atteintes.
Que doit vérifier p pour que le test soit fiable ?

Exercice 18 (encore des chaînes de Markov). La vie de Tinker est très difficile : manger à sa gamelle,
dormir, chasser les souris (pour jouer, car il ne les mange jamais).

• Après avoir mangé, Tinker ne pense qu’à une seule chose : dormir.

• Après avoir chassé les souris, Tinker a faim les trois quarts du temps et sinon, il dort.

• Après avoir dormi, Tinker est partagé entre manger six fois sur dix, chasser les souris une fois
sur dix, ou dormir encore.

On note mn, dn, cn les probabilités que Tinker mange, dorme, chasse respectivement, à l’étape n.

1. Représenter la situation par un graphe pondéré (cf. exercice sur le monde des Bisounours).

2. Si on note Xn le vecteur-colonne dont les composantes sont mn, dn, cn, donner une relation
matricielle entre Xn+1 et Xn et en déduire Xn en fonction de X0 et de n.

3. Si, dans un jour lointain, on cherche Tinker, quelle est la probabilité que ce gros paresseux
dorme ?
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Andreï Markov Tinker

(1856-1922) (2013- )

Exercice 19 (utilisation d’une loi de Poisson). On étudie une population d’êtres humains. Des sta-
tistiques ont établi que pour tout entier n, la probabilité qu’une famille ait n enfants est donnée par la
formule

pn = k
2,1n

n!

où k est une constante.

1. Déterminer la constante k.

2. On suppose qu’un enfant naît avec une probabilité 1
2 d’être une fille.

(a) Calculer la probabilité qu’une famille ait au moins une fille.
(b) On suppose que parmi les enfants d’une famille il n’y a qu’une seule fille. Quelle est la

probabilité que cette famille possède deux enfants ?

3. Proposer un moyen de calculer le nombre moyen d’enfants par famille.

12.4 Les grands classiques

Exercice 20 1. Montrer que ∀x ∈ R, ex ⩾ 1 + x. Interpréter géométriquement.

2. Soit (An)n∈N une suite d’événements indépendants d’un espace probabilisé (Ω,A,P).

(a) Montrer que « aucun des An n’est réalisé » représente bien un événement : on le notera B.

(b) Montrer que P(B) ⩽ exp

Å
−

∞∑
n=0

P(An)

ã
(avec la convention e−∞ = 0).

Exercice 21 (loi du 0-1 de Borel). Soit (An)n∈N une suite d’événements d’un espace probabilisé
(Ω,A,P). On pose A∗ =

⋂
n∈N

⋃
k⩾n

Ak.

1. Justifier que A∗ est un événement et que ω ∈ A∗ si et seulement s’il existe une infinité de n pour
lesquels ω ∈ An. Indication : une partie de N est finie ssi elle est majorée.

2. (lemme de Borel-Cantelli). On suppose que
∑

P(An) converge. Montrer que P(A∗) = 0 : il est
donc presque impossible qu’une infinité de An se réalisent.

Indication : on posera Bn =
⋃
k⩾n

Ak et la continuité décroissante.

3. On suppose maintenant que les An sont indépendants et que
∑

P(An) diverge. Montrer que
P(A∗) = 1 : il est donc presque certain qu’une infinité de An se réalisent.

Indication : on calculera P(A∗) grâce à l’exercice précédent.
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Émile Borel Francesco Paolo cantelli

(1871-1956) (1875-1966)

Exercice 22 Si k ∈ N∗, on note kN∗ l’ensemble des multiples (strictement positifs) de k. Si on choisit
un entier « au hasard », il semble intuitif que

— la probabilité qu’il soit pair est de 1
2 ,

— la probabilité qu’il soit un multiple de 3 est de 1
3 ,

— la probabilité qu’il soit dans kN est de 1
k .

Nous allons pourtant montrer qu’il n’existe pas de mesure de probabilité P sur (N∗,P(N∗)) telle que
P(kN∗) = 1

k pour tout k. Pour cela, nous admettrons que si (pk)k∈N∗ désigne la suite croissante des
nombres premiers, alors

∑ 1
pk

diverge (cf. exercice 23 pour une preuve). Imaginons donc, un instant,
qu’une telle mesure P existe.

1. Montrer que les événements pkN
∗ (k ∈ N∗) sont indépendants.

2. Déterminer l’événement
⋂

n∈N∗

⋃
k⩾n

pkN
∗ (cf. exercice 21 question 1).

3. En utilisant l’exercice 21 (loi 0-1 de Borel), trouver une contradiction.

12.5 Les exercices plus techniques

Exercice 23 (loi de Zipf, Centrale-Supélec). Si s ∈ ]1,+∞[, on pose ζ(s) =
∞∑
n=1

1
ns .

1. Soit s > 1. Justifier qu’il exite une unique mesure de probabilité Ps sur (N∗,P(N∗)) telle que
Ps({n}) = 1

ζ(s)ns pour tout n dans N∗.

2. Calculer Ps(kN
∗) si k ∈ N∗.

3. On note (pk)k∈N∗ la suite croissante des nombres premiers. Vérifier que les événements pkN
∗

sont indépendants.

4. En étudiant Ps({1}), montrer l’identité d’Euler

ζ(s) =

∞∏
k=1

1

1− p−s
k

.

5. En se servant du fait que lim
s→1+

ζ(s) = +∞ (démontré au chap. 11), montrer ce que l’on a admis

à l’exercice 22, à savoir :
∞∑
k=1

1
pk

= +∞.
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Des séries entières 13
✓ Savoir démontrer le lemme fondamental d’Abel, et

avoir compris qu’il permet de caractériser le rayon
de convergence d’une série entière : avant lui, il y a
CVA, après lui, il y a DVG.

✓ Savoir trouver un rayon de convergence en utilisant
sa définition (avec un sup).

✓ Connaître les réflexes sans lesquels le moindre exer-
cice sur les séries entières donne mal à la tête. Par
exemple, si (an) est bornée, le rayon de

∑
anz

n

est supérieur ou égal à 1. Encore un exemple : si∑
anz

n
0 diverge, on peut dire que Ra ⩽ |z0|.

✓ Savoir quoi dire du rayon de convergence de la
somme et du produit de Cauchy de deux séries en-
tières.

✓ Savoir expliquer pourquoi une fonction série entière
est de classe C∞ sur son intervalle ouvert de conver-
gence, et savoir exprimer ses dérivées.

✓ Utiliser une série entière pour résoudre une équa-
tion différentielle linéaire.

♠ S’emmêler les pinceaux entre série numérique, série
entière (qui est une série de fonctions, mais que l’on
note comme une série numérique !) et somme d’une
série entière (qui est une fonction).

♠ Appliquer la règle de D’Alembert sur une série la-
cunaire.

♠ Se précipiter sur D’Alembert en oubliant la défini-
tion même du rayon de convergence : il est élémen-
taire de trouver le rayon de

∑
zn ou de

∑
3nzn sans

déranger D’Alembert. Vous impressionnerez posi-
tivement vos khôlleurs si vous appliquez cette re-
marque.

♠ Croire qu’une série entière
∑

anx
n converge nor-

malement sur son intervalle ouvert de convergence :
c’est en général faux, il n’y a que CVN sur tout seg-
ment [−r, r] inclus dans cet intervalle.

♠ Croire que si la somme f d’une série entière
∑

anx
n

est continue en Ra, alors la somme
∑∞

n=0 anR
n
a

existe. Penser à
∑

(−1)nxn dont la somme est x 7→
1

1+x
(ici Ra = 1).

♠ Se tromper dans l’expression des dérivées k-ième de
la somme d’une série entière, notamment si ladite
série est lacunaire.

13.1 Exercices de base, rayon et somme de séries entières

Exercice 1 Soit
∑

anz
n une série entière de rayon de convergence Ra > 0.

1. On suppose qu’il existe z0 dans C tel que |z0| = Ra et
∑

anz
n
0 converge absolument. Montrer

que
∑

anz
n converge sur tout le cercle de convergence.

2. Expliquer pourquoi le caractère absolu de la convergence de
∑

anz
n
0 est indispensable.

Exercice 2 Soit F une fonction rationnelle non nulle. Déterminer le rayon de convergence de la série
entière

∑
F(n)zn.

Exercice 3 Déterminer les rayons de convergence des séries entières proposées.

∑
n(−1)nzn,

∑ n2 + 1

3n
zn,

∑
e−n2

zn,
∑

n!zn, ,
∑

n!zn
2
,
∑Ç

2n

n

å
zn,

∑
ln

Å
1 +

1

n

ã
zn,

∑
sin(e−n)zn,

∑
sin(n)zn,

∑ sin(n)

n2
zn.

Exercice 4 Rayon de convergence et somme de la série entière
∑

n2xn.

Exercice 5 Rayon de convergence et somme de la série entière
∑ xn

2n+1 sur ]0, 1[, puis sur ]−1, 0[.

Exercice 6 (séries lacunaires)

1. On note Ra le rayon de convergence de la série entière
∑

anz
n. Si k ∈ N∗, montrer que le rayon

de convergence de
∑

anz
kn est k

√
Ra.
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2. Déterminer le rayon de convergence de
∑

z(n
2).

Exercice 7 Grâce à une série entière, trouver la valeur de
∞∑
n=0

1
2n(4n+2) .

Exercice 8 Pour tout entier n, on note an la ne décimale de
√
2.

1. Trouver le rayon de convergence de la série entière réelle
∑

anx
n.

2. Déterminer l’intervalle de définition de sa somme.
3. Et si on remplace

√
2 par 1

3 ? Et par 1
4 ?

4. Déterminer la somme de la série entière
∑

anx
n où an est la ne décimale de 32

99 = 0, 323232 . . ..
5. Soit r ∈ Q. Montrer que la somme de la série entière

∑
anx

n où an est la ne décimale de r et
une fonction rationnelle.

Exercice 9 (une croyance tenace, CentraleSupélec extrait).

1. Donner un exemple de série entière
∑

anx
n de rayon de convergence égal à 1 telle que lim

x→1−

∞∑
n=0

anx
n

existe et est finie mais telle que
∑

an diverge.
2. On suppose ici que an ⩾ 0 pour tout n ∈ N, que la série entière

∑
anx

n est de rayon 1 et que

lim
x→1−

∞∑
n=0

anx
n existe et est finie. Montrer cette fois que

∑
an converge.

13.2 Les grands classiques

Exercice 10 (formule de Cauchy et théorème de Liouville). Soit
∑

anz
n une série entière complexe

dont le rayon de convergence R est non nul. On note f sa somme.

1. Montrer que ∀r ∈ ]0,R[, ∀n ∈ N, an =
1

2πrn

∫ 2π

0
f(reit)e−intdt.

2. On suppose que R = +∞ (on dit que f est une fonction entière) et que f est bornée sur C.
Déduire de la formule de Cauchy que f est constante (théorème de Liouville).

3. Donner un exemple de fonction entière réelle qui est bornée sur R et cependant non constante.

z0z1z2

R

Augustin Louis Cauchy Joseph Liouville Principe des zéros isolés
(1789-1857) (1809-1882)

Exercice 11 (principe des zéros isolés). Soit f la somme d’une série entière
∑

anz
n de rayon non nul

R. On suppose qu’il existe une suite (zk)k∈N de complexes non nuls de D(0,R) telle que

∀k ∈ N, f(zk) = 0 et lim
k→∞

zk = 0.

1. Montrer alors que f est constamment nulle sur D(0,R).
Indication. Si f n’était pas nulle, il existerait un entier p tel que ap ̸= 0. On aura tout intérêt à
considérer le plus petit entier vérifiant cela.

2. En déduire que si f s’annule sur tout un intervalle de la forme ]−ε, ε[ avec ε > 0, alors f = 0.

3. Application. Montrer que la fonction f définie sur R par f(x) =

ß
x2026 sin

(
1
x

)
si x ̸= 0,

0 si x = 0.
n’est pas DSE0.

55



Exercice 12 (Mines-Ponts) Soit p un entier non nul et A dans Mp(C). Déterminer le rayon de conver-
gence de la série entière

∑
tr(An)zn, puis sa somme en fonction de χ

A
. Indication : toute matrice

complexe est trigonalisable).

Exercice 13 (∗) (École polytechnique). On pose Wn =
∫

π

2
0 cosn(t)dt pour tout entier n. On rappelle

que Wn ∼
√
π

2n (formule de Wallis, cf. chap. 3 dans la preuve de la formule de Stirling).

1. Déterminer le rayon de convergence de la série entière
∑

Wnx
n.

2. Déterminer sa somme. Indication : on sera amené à faire un changement de variable u = tan( t2).

13.3 Fonctions DSE0

Exercice 14 Grâce à la théorie des séries entières, montrer que la fonction sinus cardinal x 7→ sin(x)
x

(complétée en 0 par 1) est de classe C∞ sur R tout entier.

Exercice 15 Soit f la fonction définie sur R par f(x) =

ß
x2 sin

(
1
x

)
si x ̸= 0,

0 si x = 0.
On veut montrer

que f n’est pas DSE0 de deux façons différentes.

1. Montrer que f n’est pas de classe C1. Conclure.

2. Trouver les zéros de f . Conclure avec l’exercice 11.

Exercice 16 Déterminer le DSE0 de sin2(x). Indic. Utiliser une formule de Trigonométrie.

Exercice 17 Déterminer le DSE0 de ln(1 + x+ x2). Indic. Remarquer une progression géométrique.

Exercice 18 (équation de Bessel, Centrale). Pour chaque réel ν ⩾ 0, on considère l’équation différen-
tielle

(Eν) : t2y′′ + ty′ + (t2 − ν2)y = 0.

1. Montrer qu’il existe une unique solution de (E0), notée J0, qui soit DSE0 et telle que J0(0) = 1.

2. Montrer qu’il existe des solutions qui ne sont pas DSE0 de (E0). On pourra se servir du théorème
de Cauchy linéaire.

3. On revient au cas général : ν ∈ R+. Montrer qu’il existe une unique solution de (Eν), notée Jν,

de la forme t 7→ tν
∞∑
n=0

ant
n avec a0 = 1.

Exercice 19 Soit f : x 7→ Arcsin2(x). Grâce à une EDL2 vérifiée par f , montrer que f est DSE0 et
déterminer son développement.

Exercice 20 (une fonction plate). Soit f : R→ R définie par

∀x ∈ R, f(x) =

®
e−1/x2 si x ̸= 0,
0 si x = 0.

Ainsi, f est clairement de classe C∞ sur R∗. Reste à l’étudier au voisinage de 0.

1. Montrer pour tout entier k, il existe un polynôme Pk tel que ∀x ∈ R∗, f (k)(x) = Pk(x)
x2k e−1/x2 .

2. En déduire que f est de classe C∞ sur R. Indication : on utilisera le théorème de la limite de
la dérivée vu en première année.

3. Montrer que f n’est pas développable en série entière, bien que sa série de Taylor-Maclaurin∑ f (k)(0)
k! ait un rayon infini.

Exercice 21 (une série entière célèbre, Centrale 2024). On considère f : x 7→ ex−1
x , définie sur R∗.

1. Justifier que f se prolonge en une fonction f̃ DSE en 0, et donner f̃ (n)(0) pour tout n.

56



2. Montrer que 1
f̃

est DSE en 0 avec un rayon R ⩾ 1. Indication : faire une anaylse-synthèse et

montrer que les coefficients bn du DSE de 1
f̃

vérifient |bn| ⩽ 1.

3. En considérant la série entière complexe
∑

bnz
n, justifier que R ⩽ 2π.

Exercice 22 Grâce à la théorie des séries entières, déterminer la valeur de
∞∑
n=0

1
(3n)! .

Exercice 23 (∗) (Intégrale de Dirichlet, Centrale-Supélec).

1. Rappeler pourquoi t 7→ sin(t)
t se prolonge sur R en une fonction DSE0 et donner son développe-

ment.

2. Soit a > 0 fixé. En servant du DSE0 de ez avec z = −ae−it, montrer que

Re

∫
π

2

0
e−ae−it

dt =
π

2
−

∞∑
k=0

(−1)ka2k+1

(2k + 1)(2k + 1)!
.

3. Exprimer
∫ a
0

sin(t)
t dt sous forme d’une série et en déduire la convergence et la valeur de

∫+∞
0

sin(t)
t dt.

13.4 Séries entières et dénombrement

Exercice 24 (Nombre de dérangements. Soit n un entier naturel non nul. On note Sn l’ensemble (le
groupe !) des permutations de J1, nK. On appelle dérangement de J1, nK tout élément σ de Sn n’ayant
aucun point fixe. On note Dn le nombre de dérangements de J1, nK. Par convention D0 = 1. On considère
la série entière

∑ Dn
n! z

n, appelée série génératrice exponentielle associée à la suite (Dn).

1. Calculer D2 et D3.

2. Justifier que
∑ Dn

n! z
n a un rayon de convergence non nul, et minorer ce rayon.

3. Expliquer pourquoi n! =
n∑

k=0

(n
k

)
Dk. Indication : compter les permutations en les rangeant par

nombre de points fixes.

4. En déduire que la somme de cette série entière est z 7→ e−z

1− z
et que Dn = n!

n∑
k=0

(−1)k

k! .

5. Cent personnes se rendent à une soirée mondaine, où le dress code est smoking et chapeau haut
de forme. Tous laissent leur chapeau au vestiaire. La soirée étant fortement alcoolisée, le retour
au vestiaire est assez... chaotique. Quelle est la probabilité pour qu’aucun des convives ne reparte
chez lui avec son propre chapeau ?

6. (Bonus) Établir que Dn = ⌊n!e + 1
2⌋ si n ∈ N∗. Indic. Utiliser le reste d’une série alternée.

Une soirée mondaine Eugène Catalan

(1814-1894)

Exercice 25 (Nombres de Catalan). Soit n un entier naturel non nul. On appelle ne nombre de Catalan
le nombre de parenthésages possibles dans un produit de n+1 nombres et on le note Cn. Par exemple,
si n = 2, C2 = 2 car (ab)c et a(bc) sont les deux seuls parenthésages possibles pour un produit de trois
nombres. Par convention, on pose C0 = 1.

1. Déterminer C1 et C3.
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2. Montrer que Cn+1 =
n∑

k=0

CkCn−k.

3. On suppose pour l’instant que la série entière
∑

Cnx
n a un rayon R non nul, et on note f sa

somme. Montrer que ∀x ∈ ]−R,R[, xf(x)2 = f(x)− 1.

4. En déduire R et l’expression de f(x) en fonction de x.

5. Exprimer finalement Cn en fonction de n et en donner un équivalent.
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Des variables aléatoires discrètes 14
✓ Savoir donner la définition d’une variable aléatoire,

et maîtriser les notations (X = x), (X ⩽ x), etc.
✓ Avoir compris que la loi d’une VARD se décrit

grâce à un germe de probabilité : (pn)n∈N avec
pn = P(X = xn), où xn sont les valeurs prises par
X.

✓ Savoir donner la définition de l’indépendance d’une
famille de variables aléatoires discrètes.

✓ Maîtriser les notions de loi conjointe et de loi mar-
ginale.

✓ Connaître les propriétés de l’espérance, de la va-
riance et de la covariance.

✓ Maîtriser le théorème de transfert, indispensable et
d’usage fréquent.

✓ Connaître le lien entre la fonction génératrice GX,
l’espérance E(X) et la variance V(X).

✓ Connaître les lois G(p) et P(λ), leur interprétation
probabiliste, leur espérance, leur variance, leur fonc-
tion génératrice. Plus important : savoir retrouver
rapidement tout ça.

✓ Savoir expliquer l’approximation d’une loi bino-
miale par une loi de Poisson.

✓ Savoir démontrer l’inégalité de Markov, et savoir
en déduire rapidement l’inégalité de Bienaymé-
Tchebychev et la loi faible des grands nombres.

♠ Croire qu’une variable aléatoire est simplement une
fonction définie sur Ω à valeurs dans R (ou dans
n’importe quoi d’autre d’ailleurs).

♠ Écrire des choses dénuées de sens comme P(X)
quand X est une variable aléatoire.

♠ Ne pas avoir compris l’importance de la convergence
absolue dans la définition de l’espérance.

♠ Oublier l’hypothèse d’indépendance dans E(XY) =
E(X)E(Y) (avec l’hypothèse d’existence de E(X) et
E(Y) bien sûr).

♠ Oublier l’hypothèse d’indépendance dans V(X +
Y) = V(X) + V(Y) (avec l’hypothèse d’existence
de V(X) et V(Y) bien sûr).

♠ Oublier l’hypothèse de positivité dans l’inégalité de
Markov.

14.1 Exercices de base

Exercice 1 On lance deux dés, un blanc et un rouge. On note X le nombre indiqué par le dé blanc,
et Y le maximum des numéros indiqués par les deux dés.

1. Donner la loi du couple (X,Y).

2. En déduire les lois de X et Y. Les variables X et Y sont elles indépendantes ?

Exercice 2 Soit X une variable aléatoire suivant une loi uniforme U(J1,NK), où N ∈ N∗.
Donner la fonction génératrice de X et en déduire l’espérance et la variance de X.

Exercice 3 Soit X une variable aléatoire suivant une loi binomiale B(n, p). On pose Y = 1
X+1 .

Donner la loi de Y, puis calculer son espérance.

Exercice 4 Soit X et Y deux variables aléatoires indépendantes sur le même espace probabilisé. On
suppose que X suit P(λ) et que Y suit P(μ). Pour tout entier n, déterminer la loi de X sachant
(X + Y = n).

Exercice 5 Soit X une variable de Poisson de paramètre λ > 0. Déterminer la probabilité pour que X
ne prenne que des valeurs paires.

Exercice 6 Soit λ dans R∗
+ et soit X une variable de Poisson de paramètre λ. Déterminer E( 1

X+1).

Exercice 7 Soit p dans ]0, 1[ et soit X une variable géométrique de paramètre p. Déterminer E( 1
X).
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Exercice 8 Soit X et Y deux variables aléatoires indépendantes géométriques de paramètres respectifs
p et q. Calculer l’espérance de max(X,Y).

Exercice 9 Soit n un entier naturel non nul et X une variable aléatoire de loi G( 1n).
1. Montrer que P(X ⩾ n2) ⩽ 1

n .
2. Montrer que P(|X− n| ⩾ n) ⩽ 1− 1

n . En déduire que P(X ⩾ 2n) ⩽ 1− 1
n .

Exercice 10 Soit λ > 0 et X ; P(λ). En utilisant l’inégalité de Bienaymé-Tchebychev, démontrer
que P

(
X ⩽ λ

2

)
⩽ 4
λ

et P (X ⩾ 2λ) ⩽ 1
λ
.

Exercice 11 Soit X une variable aléatoire réelle admettant une variance, et soit a > 0. On pose
m = E(X) et σ = σX.

1. Pour tout λ dansR+, montrer que P(X−m ⩾ a) = P(X−m+λ ⩾ a+λ) puis que E((X−m+λ)2) =
σ2 + λ2.

2. Montrer alors que ∀λ ∈ R+, P(X−m ⩾ a) ⩽ σ2+λ2

a2+λ2+2aλ
et en déduire que P(X−m ⩾ a) ⩽ σ2

a2+σ2 .

3. Démontrer que P(|X −m| ⩾ a) ⩽ 2σ2

a2+σ2 : quand cette inégalité est-elle meilleure que celle de
Bienaymé-Tchebychev ?

14.2 Les grands classiques

Exercice 12 Soit X et Y deux variables aléatoires indépendantes géométriques de paramètres respec-

tifs p et q. Calculer la probabilité pour que la matrice
Å
X 1
0 Y

ã
soit diagonalisable sur R.

Exercice 13 (Centrale 2024 (extrait)). Soit p dans ]0, 1[.
On considère le polynôme aléatoire Q = ξ1 + 2ξ2X où ξ1, ξ2 ; G(p) sont indépendantes. On pose

aussi A =

Å
1 −2
−2 1

ã
. Quelle est la probabilité pour que Q(A) soit inversible ?

Exercice 14 Soit (Xn)n∈N une suite de variables aléatoires discrètes sur un espace mesurable (Ω,A)
à valeurs dans un ensemble E et soit N une variable aléatoire sur ce même espace, mais à valeurs dans
N. On définit la fonction Y : Ω→ E par

∀ω ∈ Ω, Y(ω) = XN(ω)(ω).

Montrer que Y est une variable aléatoire discrète sur (Ω,A).

Exercice 15 (points fixes d’une permutation, Centrale 2023 (extrait)). Soit n dans N∗. On note Sn

l’ensemble des permutations de J1, nK : on munit cet ensemble de la tribu discrète P(Sn) et de la
probabilité uniforme P. Si i ∈ J1, nK, on définit la variable aléatoire Xi : Sn → R par

∀σ ∈ Sn, Xi(σ) =

ß
1 si σ(i) = i
0 sinon.

1. Déterminer la loi de Xi, et expliquer pourquoi les X1, . . . ,Xn ne sont pas indépendantes.
2. Déterminer le nombre moyen de points fixes des permutations de Sn.
3. Calculer la variance de X1 + . . .+Xn.

Exercice 16 (identité de Wald). Soit N,X1, . . . ,Xn, . . . des variables aléatoires indépendantes à valeurs
dans N. On suppose que X1, . . . ,Xn, . . . suivent toutes une même loi, dont la fonction génératrice est

G. On considère alors la somme aléatoire S =
N∑

k=1

Xk.

1. Justifier que S est une variable aléatoire discrète et que GS = GN ◦G sur [0, 1].
2. On suppose que toutes les variables ont une espérance. Montrer que E(S) = E(N)E(X1).
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Exercice 17 Soit X,X0,X1,X2, . . . des variables aléatoires discrètes réelles sur un espace mesurable
(Ω,A). Démontrer que l’ensemble des ω ∈ Ω pour lesquels Xn(ω) tend vers X(ω) quand n→∞ est un
événement.

Remarque. Quand cet événement est de probabilité 1, on dit que la suite (Xn)n∈N converge presque
sûrement vers X.

Exercice 18 Grâce aux fonctions génératrices, montrer qu’il est impossible de truquer deux dés (à six
faces) pour que la somme d’un lancer de ces deux dés suivent une loi uniforme sur J2, 12K. Indication :
quelles sont les racines réelles du polynôme 1 + X + . . .+X10 ?

Exercice 19 (moindres carrés). Soit X et Y deux variables aléatoires discrètes réelles admettant un
moment d’ordre 2. On suppose que V(X) > 0. Déterminer (a, b) dans R2 tel que la quantité E([Y −
(aX+ b)]2) soit minimale. Interpréter graphiquement.

Exercice 20 (taux de panne). Soit T une variable aléatoire définie sur un espace (Ω,A,P) à valeurs
dans N, telle que P(T > n) ̸= 0 pour tout n dans N. Dans la pratique, T représente l’instant (en
jours) où une machine va tomber en panne. On appelle taux de panne de T la suite (τn)n∈N définie par
τn = P(T⩾n)(T = n).

1. Montrer que τn ∈ [0, 1[ pour tout entier n.
2. Exprimer grâce à la suite τ la probabilité P(T ⩾ n) pour tout n, et en déduire que

∑
τn diverge.

Exercice 21 Soit n dans N∗ et X1, . . . ,Xn des VARD sur un même espace probabilisé admettant
toutes une variance. On appelle matrice de covariance la matrice C =

(
Cov(Xi,Xj)

)
1⩽i⩽n
1⩽j⩽n

∈ Mn(R).

Démontrer que C ∈ S+
n R.

Exercice 22 (le problème du collectionneur). Chez les surgelés Picard, on peut acheter des galettes
des rois et chacune contient une fève. Sur l’emballage on peut voir qu’il y a six fèves à collectionner
en tout. Si k ∈ N∗, on note Xk le nombre de galettes achetées ayant permis l’obtention de k fèves
différentes.

1. Que vaut X1 ? Déterminer la loi de Xk+1 −Xk.
2. En déduire le nombre de galettes moyen permettant d’obtenir la collection complète des fèves.
3. En supposant les Xk+1 −Xk indépendantes, calculer σX6 . Qu’en conclure ?
4. Généraliser avec N fèves et donner un équivalent de E(XN) quand N→∞.

Une nouvelle fève ? Blaise Pascal Siméon Denis Poisson Henri Poincaré

(1623-1662) (1781-1840) (1854-1912)

Exercice 23 (loi de Pascal et loi binomiale négative). On considère un schéma de Bernoulli de para-
mètre p : c’est une expérience aléatoire aboutissant à un succès avec une probabilité p, ou à un échec
avec la probabilité complémentaire 1− p. Si n ∈ N∗, on s’intéresse au nombre d’expériences qu’il faut
réaliser pour obtenir n succès.

1. Montrer que la loi de la variable aléatoire discrète X ainsi créée, à valeurs dans Jn,+∞J est
définie, pour tout entier k ⩾ n,

P(X = k) =

Ç
k − 1

n− 1

å
pn(1− p)k−n.

La loi de X est alors appelée loi de Pascal de paramètres n et p, et se note Pasc(n, p).
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2. Montrer que E(X) = n
p et V(X) = n(1−p)

p2
. On pourra voir X comme la somme de n VARD

indépendantes.

3. Si X ; Pasc(n, p), donner une interprétation de la variable Y = X−n. Prouver que Im(Y) = N
et que

∀ℓ ∈ N, P(Y = ℓ) =

Ç
−n
ℓ

å
pn(p− 1)ℓ,

où
(
α

n

)
a été défini pour tout (n, α) dans N × C comme étant le nombre α(α−1)...(α−n+1)

n! . Cette
égalité justifie le nom de la loi de Y : loi binomiale négative de paramètre (n, p) que l’on note
BN(n, p).

4. Pour mener à bien un projet, une entreprise doit réunir 6 ingénieurs ayant des compétences
pointues en informatique (notamment en Python !). Les recruteurs savent que la proportion de
tels ingénieurs est assez faible : 15 % parmi les candidatures reçues seulement. Les entretiens
étant techniques, on ne peut se permettre d’auditionner plus de 4 candidats par jour.

(a) Combien de jours peuvent espérer mettre les RH pour réunir l’équipe voulue ?
(b) Quelle est la probabilité qu’ils la constituent en moins d’une semaine ? Discuter la pertinence

de ce résultat en calculant un écart-type.

14.3 Exercices plus techniques

Exercice 24 (formule du crible de Poincaré). Soit (Ω,A,P) un espace probabilisé.

1. Si A ∈ A, rappeler pourquoi E(1A) = P(A).

2. Justifier que pour tout (A,B) dans A2, 1A∩B = 1A × 1B.

3. Soit P le polynôme
n∏

k=1

(X− rk) avec r1, . . . , rn ∈ C. Si k ∈ J1, nK, on note σk la somme de tous

les produits k à k des racines de P, c’est-à-dire σk =
∑

i1<...<ik

ri1 . . . rik . Expliciter, en fonction

de σk, les coefficients du polynôme P.

4. Soit n dans N∗ et A1, . . . ,An des événements. Démontrer la célèbre formule :

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

(−1)k−1
∑

1⩽i1<...<ik⩽n

P(Ai1 ∩ . . . ∩Aik).

Exercice 25 (marche aléatoire sur Z). Un point se déplace sur Z. Au départ, il est en 0. À chaque
étape, il se déplace d’un cran vers la droite ou d’un cran vers la gauche avec une probabilité identique.
Les déplacements se font de manière indépendante.

1. Pour tout entier n, on note An la position du point à l’étape n. Ainsi, A0 = 0. On note aussi
Dn le nombre de déplacements d’un cran vers la droite après n étapes.

(a) Donner une relation liant An et Dn.
(b) Déterminer la loi de Dn.

2. Trouver la loi de An et en déduire que la série
∑

P(An = 0) diverge.

On définit de la même façon une marche aléatoire sur Zd. En illustration, une marche aléatoire sur Z2

réalisée avec Python.
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Des intégrales à paramètre 15
✓ Savoir expliquer pourquoi la convergence uniforme

est suffisante mais pas nécessaire pour intervertir
limite et intégrale sur un segment.

✓ A contrario, savoir donner des contre-exemples de
suites de fonctions cpm (fn) convergeant uniformé-
ment sur un intervalle (nécessairement non borné)
sans pour autant qu’il y ait interversion limite-
intégrale.

✓ Connaître parfaitement les hypothèses précises des
théorèmes de ce chapitre : aucune démonstration
n’est au programme, il faut donc être encore plus
irréprochable que d’habitude !

✓ Savoir trouver une fonction dominante. Autrement
dit, savoir majorer une quantité |f(x, t)| indépen-
damment de x. Au besoin, on peut considérer que
x ne varie que sur un segment [a, b].

♠ Trouver une fonction dominante qui dépend de n
(dans le cas de la convergence dominée) ou de x
(dans le cas des intégrales à paramètre).

♠ Se mélanger entre la variable d’intégration, notée t
dans ce cours, et le paramètre, noté x ici. Bien sûr,
on peut inverser toutes les notations. Notons qu’en
SI, le paramètre dans la transformée de Laplace se
note p (et c’est d’ailleurs un nombre complexe).

♠ Tenter de faire une domination sur tout segment en
considérant des segments inclus dans... l’intervalle
sur lequel on intègre ! C’est dans l’intervalle dans
lequel évolue le paramètre qu’il faut segmenter !

15.1 Exercices de base

Exercice 1 (intégrales de Wallis). Déterminer lim
n→+∞

∫
π

2

0
cosn(t) dt grâce au théorème de convergence

dominée. Pouvait-on utiliser la convergence uniforme pour intervertir limite et intégrale ?

Exercice 2 Soit f : [0, 1]→ R continue. Déterminer lim
n→+∞

∫ 1

0
f(xn) dx.

On rappelle que l’on pose, pour tout x > 1, ζ(x) =
∞∑
n=1

1
nx (fonction zêta d’Euler-Riemann).

Exercice 3 Montrer que pour tout p dans N∗,
∫ +∞

0

tp

et − 1
dt = p!ζ(p+ 1).

Exercice 4 Montrer que
∫ 1

0

ln(t)

1− t2
dt = −3ζ(2)

4
.

Exercice 5 (Cesàro intégral). Si f est continue par morceaux sur un segment [a, b], on appelle valeur

moyenne de f sur [a, b] la quantité
1

b− a

∫ b

a
f(x) dx.

Soit f : R+ → R continue par morceaux admettant une limite finie ℓ en +∞. Montrer que la valeur
moyenne de f sur [0, n] tend vers ℓ quand n tend vers +∞.

15.2 Les grands classiques

Exercice 6 (l’astuce de la fonction indicatrice). Déterminer lim
n→∞

∫ n

0

Å
1− x2

n

ãn

dx. Pour cela, on

remarquera que pour tout n dans N∗,
∫ n

0

Å
1− x2

n

ãn

dx =

∫ +∞

0

Å
1− x2

n

ãn

1[0,n](x) dx.

Exercice 7 (intégrale à paramètre). Soit I et J deux intervalles de longueurs non nulles et f : I×J→ R

une fonction telle que
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• pour tout t dans I, x 7→ f(t, x) est de classe C1 sur J,

• pour tout x dans J, t 7→ f(t, x) est continue sur I.

On suppose de plus que a ∈ I et que b : J→ I est dérivable. Expliquer pourquoi la fonction

x 7−→
∫ b(x)

a
f(t, x) dt

est dérivable sur J et déterminer sa dérivée.

Exercice 8 (lemme de factorisation de Hadamard). Il est bien connu que si un polynôme P a pour
racine 0, alors il existe un polynôme Q tel que P = XQ. Cette propriété est toute aussi vraie pour les
fonctions DSE0. Cet exercice montre qu’elle est encore vraie pour les fonctions de C∞.

1. Soit f : R→ R de classe C∞ telle que f(0) = 0. Montrer que s’il existe une fonction g de classe
C∞ telle que f(x) = xg(x) pour tout x ∈ R, alors g est unique.

2. Montrer que pour tout x ∈ R, g(x) =
∫ 1
0 f ′(ux) du. En déduire que g est bien de classe C∞.

3. Montrer que cette propriété de factorisation est fausse pour les fonctions seulement continues.

Exercice 9 (intégrale de Gauss, le tube inter-concours).

1. Prouver l’existence de
∫ +∞

0
e−t2 dt, que l’on notera I.

2. On définit les fonctions f et g sur R+ en posant, pour tout x ⩾ 0,

f(x) =

∫ 1

0

e−(t2+1)x2

t2 + 1
dt et g(x) =

∫ x

0
e−t2 dt.

Après avoir dérivé f et g (en justifiant), établir une relation entre f et g.

3. En déduire la valeur de I.

Exercice 10 Soit f : [0, 1]→ R∗
+ continue. Pour chaque réel p de R+, on pose F(p) =

∫ 1
0 f(t)p dt.

1. Montrer que F est dérivable sur R+ et calculer F′(0).

2. En déduire la valeur de lim
p→0

Å
∫ 1

0
f(t)p dt

ã1/p

.

Remarque. On peut montrer que lim
p→∞

Ä
∫ 1
0 f(t)p dt

ä1/p
= sup

[0,1]
|f |, d’où l’explication de la notation ∥f∥∞.

Exercice 11 (transformée de Fourier, Centrale-Supélec écrits 2021). Pour toute fonction continue par
morceaux intégrable f : R→ C (c’est-à-dire f ∈ L1(R,C)) on définit une fonction f̂ par

∀ν ∈ R, f̂(ν) =

∫

R

f(t)e−2iπtν dt.

1. Montrer que f̂ est correctement définie sur R et que f̂ est une fonction bornée sur R (on note
B(R,C) l’espace des fonctions bornées).

2. Prouver que f̂ est une fonction continue.

3. Justifier que f 7→ f̂ est une application linéaire continue de l’espace normé (L1
c(R,C), ∥ · ∥1)

dans l’espace normé (B(R,C), ∥ · ∥∞).

4. Soit k dans N∗. On suppose que t 7→ tkf(t) est intégrable sur R. Expliquer alors pourquoi f̂ est
de classe Ck et calculer (f̂)(k). A-t-on (f̂)′ = “f ′ ?

5. Déterminer f̂ si f la fonction 1[−1,1].
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Exercice 12 (intégrale de Dirichlet). On sait que I =
∫+∞
0

sin(t)
t dt converge (mais pas absolument). On

se propose de (re)trouver sa valeur. On considère la transformée de Laplace du sinus cardinal, définie
par

∀p ∈ R+, F(p) =

∫ +∞

0

sin(t)

t
e−pt dt.

1. Déterminer la limite de F en +∞.

2. Justifier que F est dérivable sur ]0,+∞[ et exprimer simplement F′(p) pour p > 0.

3. En déduire l’expression de F(p) quand p > 0.

4. On admet que F est continue en 0. En déduire la valeur de l’intégrale de Dirichlet.

5. (∗) Montrer que F est continue en 0.
Indication. Découper R+ en segments de la forme [nπ, (n+1)π] et utiliser une série alternée.

Exercice 13 (Centrale 2023, extrait). On cherche à donner un sens à
∑
n∈N

an pour certaines séries

divergentes
∑

an, en généralisant le procédé de sommation habituel.

Une suite de fonctions continues de R+ dans R, B = (fn)n∈N, est appelée famille de Bertrand
quand il existe M dans R+ tel que ∀n ∈ N, 0 ⩽ fn ⩽ M et quand

∫+∞
0 fn(t) dt = 1 pour tout entier n.

De plus, une série réelle
∑

an est dite B-convergente quand
— la série de fonctions

∑
anfn converge simplement sur R+ vers une fonction continue Sa.

— l’intégrale
∫+∞
0 Sa(t) dt converge.

Dans ce cas, le nombre
∫+∞
0 Sa(t) dt s’appelle la B-somme de

∑
an et se note

∑
n∈N

Ban.

1. Si
∑

an est absolument convergente, montrer qu’elle est B-convergente pour toute famille de
Bertrand B, et calculer

∑
n∈N

Ban.

2. On pose fn(t) =
tn

n! e
−t pour tout (n, t) dans N × R+. Montrer que (fn)n∈N est une famille de

Bertrand, que l’on notera B. Montrer que
∑

(−1)n est B-convergente et calculer
∑
n∈N

B(−1)n.

15.3 Exercices plus techniques

Exercice 14 (produit de convolution, Centrale-Supélec). Soit f : R → R continue et g : R → R de
classe C1. On suppose que g est nulle en dehors d’un segment [a, b].

1. Montrer que pour tout réel x,
∫

R

f(t)g(x− t) dt converge. On note (f ⋆ g)(x) sa valeur.

2. Établir que f ⋆ g = g ⋆ f .

3. Justifier que f ⋆ g est de classe C1 et exprimer sa dérivée.

Exercice 15 (un théorème de Fubini). Soit f : [a, b]× [c, d]→ K une fonction continue. Montrer que

∫ b

a

ñ
∫ d

c
f(x, y) dy

ô
dx =

∫ d

c

ñ
∫ b

a
f(x, y) dx

ô
dy.

Remarque. Cette quantité est évidemment
∫∫

D
f(x, y) dxdy où D est le rectangle [a, b]× [c, d].

Exercice 16 (encore Euler ! Centrale-Supélec). Nature et calcul de
∫ +∞

0
ln(x)e−x dx.

Indication : on pourra se servir de fn : x 7→
(
1− x

n

)n−1
1[0,n](x).
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Des espaces préhilbertiens réels 16
16.1 Faire le point sur le cours

✓ Savoir montrer qu’une application est un produit
scalaire.

✓ Connaître les produits scalaires de référence.
✓ Savoir énoncer et démontrer l’inégalité de Cauchy-

Schwarz.
✓ Connaître les formules de polarisation, et savoir à

quoi elles servent.
✓ Savoir mettre en place l’algorithme de Gram-

Schmidt pour orthonormaliser une famille libre.
✓ Connaître les relations de base concernant l’ortho-

gonal d’une partie (renversement des inclusions,
etc.)

✓ Connaître la théorie du supplémentaire orthogonal
et du double orthogonal, en tout cas en dimension
finie.

✓ Savoir donner l’expression d’une projection ortho-
gonale dans une base orthonormale.

✓ Avoir compris comment les projections orthogonales
intervenaient pour le calcul la distance d’un point
à un sous-espace de dimension finie. Bien connaître
le cas particulier des hyperplans.

✓ Savoir expliquer le lien entre formes linéaires et vec-
teurs d’un espace euclidien grâce au théorème de
Riesz.

♠ Écrire SchwarTz au lieu de Schwarz, et le prononcer
« chouarze »

♠ Croire que la propriété d’être positif pour un pro-
duit scalaire est le fait que ⟨u | v⟩ ⩾ 0 pour tous
vecteurs u et v : c’est ⟨u | u⟩ ⩾ 0 !

♠ Croire que (f, g) 7→
∫ b

a
fg est un produit scalaire sur

l’ensemble des fonctions continues par morceaux sur
[a, b] : l’aspect non dégénéré n’est pas vérifié car la
continuité est manquante.

♠ Croire que pour tout sous-espace vectoriel F d’un
espace préhilbertien E, on a toujours E = F⊕ F⊥.

♠ Dire en khôlle que toute forme linéaire d’un espace
euclidien est représentable et... ne pas savoir expli-
quer ce que cela veut dire.

♠ Croire que tout hyperplan admet un vecteur nor-
mal : c’est le cas dans les espaces euclidien cepen-
dant.

16.2 Exercices de base

Exercice 1 (théorème du losange). Soit (E, ⟨·, ·⟩) un espace préhilbertien réel.
1. Pour tous vecteurs x et y de E, démontrer que ∥x∥ = ∥y∥ si et seulement si x+ y ⊥ x− y.
2. Expliquer en quoi cela donne une caractérisation des losanges parmi les parallélogrammes.

Exercice 2 Soit n dans N. Pour quelles valeurs de l’entier p l’application (P,Q) 7−→
p∑

k=0

P(k)Q(k)

est-elle un produit scalaire sur Rn[X].

Exercice 3 Montrer que l’application (P,Q) 7−→
∞∑
n=0

e−nP(n)Q(n) est un produit scalaire sur R[X].

Exercice 4 L’espace R[X] est muni des deux produits scalaires suivants

φ : (P,Q) 7−→
∫ 1

0
P(t)Q(t) dt et ψ : (P,Q) 7−→

∞∑
k=0

pkqk

(où pk et qk sont les coefficients de degré k des polynômes P et Q).
1. Pour quel produit scalaire X3 est-il plus proche de R1[X] ?
2. On pose ε = 10−42. Construire un produit scalaire sur R[X] de sorte que dist(X3,R1[X]) = ε.

Exercice 5 Soit (E, ⟨·, ·⟩) un espace préhilbertien réel, et soit F et G des sous-espaces vectoriels de E.
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1. Montrer que (F + G)⊥ = F⊥ ∩G⊥ et que (F ∩G)⊥ ⊃ F⊥ +G⊥.

2. Si E est de dimension finie, montrer que (F ∩G)⊥ = F⊥ +G⊥.

Exercice 6 (polynômes de Legendre). On munit R[X] du produit scalaire φ : (P,Q) 7→
∫ 1
−1 PQ. Appli-

quer le procédé de Gram-Schmidt sur (1,X,X2) pour obtenir une famille (P0,P1,P2) orthogonale telle
que Pk(1) = 1 pour tout k.

Exercice 7 Soit (E, ⟨·, ·⟩) un espace euclidien et soit f ∈ L(E) tel que ⟨f(x), y⟩ = ⟨x, f(y)⟩ pour tous
x et y dans E. Montrer que Im(f) = Ker(f)⊥.

Exercice 8 Soit f : [0, 1] → R continue et positive. On pose In =

∫ 1

0
xnf(x) dx pour tout entier n.

Montrer que pour tous n et p dans N, (In+p)
2 ⩽ I2nI2p.

Exercice 9 L’espace R3 est muni de son produit scalaire canonique.

1. Calculer la distance du point M = (1, 2, 3) au plan P : x+ 3y − z = 0.

2. Calculer la distance du point M = (1, 2, 3) à la droite D = VectR((1, 1, 1)).

3. Mêmes questions mais avec le plan affine P : x+3y−z = 1 et la droite affine D= (2,−1, 3)+D.

Exercice 10 (École Navale). Montrer que la matrice
1

6

Ñ
5 −2 1
−2 2 2
1 2 5

é
représente une projection or-

thogonale sur un certain sous-espace que l’on déterminera.

Exercice 11 (autour de Riesz 1 : intégration numérique de Newton-Cotes).

1. Justifier l’existence de réels p1, p2, p3 tels que ∀P ∈ R2[X],
∫ 1
0 P(t)dt = p1P(0)+p2P(

1
2)+p3P(1).

2. Déterminer de tels réels et en déduire une approximation décimale de ln(2).

Exercice 12 (autour de Riesz 2, Centrale 2023). Soit n un entier naturel non nul.

1. Montrer que l’application φ : Rn−1[X]→ R qui à tout polynôme
n−1∑
k=0

akX
k associe

n−1∑
k=0

ak est une

forme linéaire.

2. En déduire qu’il existe un unique polynôme P de Rn−1[X] tel que ∀k ∈ J0, n−1K,
∫ 1
0 xkP(x) dx =

1.

3. On note p0, . . . , pn−1 les coefficients de ce polynôme P. Soit f dans C([0, 1],R) vérifiant les
relations ∀k ∈ J0, n− 1K,

∫ 1
0 xkf(x) dx = 1. Démontrer que

∫ 1
0 f(x)2 dx ⩾ p0 + . . .+ pn−1.

Exercice 13 (autour de Riesz 3).

1. Soit n dansN. Montrer qu’il existe un unique polynôme A dansRn[X] tel que P(0) =
∫ 1

0
P(t)A(t) dt

pour tout polynôme P de Rn[X]. Montrer alors que deg(A) = n. Indication : on pourra raisonner
par l’absurde et considérer XA.

2. Montrer qu’il n’existe pas de polynôme A tel que ∀P ∈ R[X], P(0) =

∫ 1

0
P(t)A(t) dt.

Exercice 14 (autour de Riesz 4). Si P et Q sont dansR[X], on pose ⟨P,Q⟩ = P(0)Q(0)+
∫ 1
0 P(t)Q(t) dt.

1. Montrer que ⟨·, ·⟩ est un produit scalaire sur R[X].

2. Montrer que l’application φ : P 7→ P(0) est une forme linéaire continue sur E.

3. Montrer que Ker(φ) est fermé mais que pourtant Ker(φ)⊕ (Ker(φ))⊥ ̸= E.

4. En déduire que la forme linéaire φ : P→ P(0) n’est pas représentable (bien que continue).
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5. Dans un espace préhilbertien, si deux sous-espaces sont supplémentaires, leurs orthogonaux le
sont-ils aussi ?

Exercice 15 (Espace préhilbertien de dimension finie). Montrer que tout espace préhilbertien réel
de dimension finie est un espace de Hilbert, c’est-à-dire que toute série absolument convergente est
convergente. Indication : on pourra se servir de la « norme infinie » associée à une base.

Exercice 16 (un espace préhilbertien qui n’est pas de Hilbert). Si P et Q sont dans R[X] on pose

⟨P,Q⟩ =
∞∑
n=0

pnqn (où pn est le ne coefficient de P, idem pour Q).

1. Montrer que ⟨P,Q⟩ est correctement défini et que ⟨·, ·⟩ est un produit scalaire sur R[X].

2. Montrer que la série
∑ 1

2nX
n est absolument convergente, mais ne converge pas.

3. En déduire que (R[X], ⟨·, ·⟩) n’est pas un espace de Hilbert.

16.3 Les grands classiques

Exercice 17 (description des produits scalaires sur Rn). Soit n dans N∗. On identifie Rn et Mn,1(R) :
le n-uplet (x1, . . . , xn) sera identifié à la colonne correspondante. Montrer que les produits scalaires sur
Rn sont exactement les applications de la forme

φA : (X,Y) 7−→ X⊺AY

où A ∈ S++
n (R). Montrer de plus que A est unique : ainsi, l’application A 7→ φA est une bijection de

S++
n (R) dans l’ensemble des produits scalaires de Rn.

Exercice 18 Dans R3 muni de son produit scalaire usuel, soit D la droite affine passant par A =
(1, 1, 1) et dirigée par u⃗ = (2, 0,−3) et soit D′ la droite affine passant par A′ = (−1, 0, 2) et dirigée par
u⃗′ = (1, 1, 2).

1. Montrer que D et D′ ne sont pas coplanaires.

2. Déterminer une droite D′′ à la fois perpendiculaire à D et à D′.

Exercice 19 (Centrale-Supélec 2022). Soit n un entier naturel non nul et A dans Mn(R).

1. Montrer que Ker(A) = Ker(A⊺ ·A). Indication : utiliser la norme euclidienne.

2. En déduire que Im(A) = Im(A ·A⊺).

Exercice 20 Soit n un entier naturel non nul. On munit Mn(R) de son produit scalaire canonique.

1. Montrer que Sn(R)
⊥ = An(R). Que vaut alors An(R)

⊥ ?

2. Calculer la distance de In à An(R).

3. Prouver que pour tout A dans Mn(R), tr(A) ⩽
√
n
√
tr(A⊺ ·A).

Exercice 21 (caractérisation des projections orthogonales). Soit (E, ⟨·, ·⟩) un espace préhilbertien réel
et p une projection de E. Montrer que

1. p est une projection orthogonale ssi ∀x ∈ E, ∥p(x)∥ ⩽ ∥x∥ (inégalité de Bessel).

2. p est une projection orthogonale non nulle ssi 9p9 = 1.

3. p est une projection orthogonale ssi ∀x ∈ E, ⟨p(x), x⟩ ⩾ 0.

Exercice 22 (décomposition QR). Soit n un entier naturel non nul et A dans GLn(R).

1. Montrer, grâce au procédé de Gram-Schmidt appliqué aux colonnes de A, qu’il existe un couple
(Q,R) avec Q dans On(R) et R triangulaire supérieure à coefficients diagonaux positifs tel que
A = QR.

2. Expliquer en quoi cette décomposition facilite la résolution du système linéaire AX = B.
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3. Application 1. Trouver la décomposition QR de

Ñ
1 1 0
1 0 1
0 1 1

é
.

4. Application 2. Prouver que pour toute matrice A dans GLn(R), |det(A)| ⩽ ∥C1∥ × . . . × ∥Cn∥
où ∥Ci∥ est la norme euclidienne de la ie colonne de A (inégalité de Hadamard).

Exercice 23 Soit n un entier naturel. Grâce à la théorie des projections orthogonales, déterminer la
valeur de

inf
(a,b)∈R2

∫ +∞

0
e−x (xn − a− bx)2 dx.

Exercice 24 (matrice de Gram, Centrale-Supélec 2022). Soit (E, ⟨·, ·⟩) un espace euclidien de dimen-
sion n (un entier non nul). Si (x1, . . . , xp) est une famille de p vecteurs de E, on note G(x1, . . . , xp)
la matrice de Mp(R) dont le terme de place (i, j) est ⟨xi, xj⟩ : c’est la matrice de Gram de la famille
(x1, . . . , xp). Son déterminant sera noté G(x1, . . . , xp).

1. Que vaut G(e1, . . . , ep) si (e1, . . . , ep) est une famille orthonormale ?

2. Montrer que si (x1, . . . , xp) est une famille liée alors G(x1, . . . , xp) = 0.

3. On suppose que (x1, . . . , xp) est libre, et on pose F = Vect(x1, . . . , xp). Si B désigne une base
orthonormale de F, on note M la matrice dont la ie colonne est formée des coordonnées de xi
dans B.

(a) Exprimer G(x1, . . . , xp) en fonction de M et M⊺. En déduire que G(x1, . . . , xp) > 0.

(b) Montrer que si x ∈ E, alors d(x,F) =

 
G(x, x1, . . . , xp)

G(x1, . . . , xp)
. On utilisera E = F⊕ F⊥

(c) Si a ∈ E \ {0E}, retrouver la formule « d(x, a⊥) =
|⟨x, a⟩|
∥a∥

».

Exercice 25 (moindres carrés et équation normale, CentraleSupélec). Soit n et p dans N∗ et A dans
Mn,p(R) (donc a priori non inversible puisque même pas carrée). On cherche à résoudre le système
AX = B, la matrice colonne B étant donnée dans Mn,1(R), et l’inconnue étant dans Mp,1(R). En
général, il n’y a pas de solution à ce système, aussi pense-t-on à trouver les X∗ ∈Mp,1(R) tels que

∥AX∗ − B∥ = min
X∈Mp,1(R)

∥AX− B∥,

où ∥ · ∥ est la norme euclidienne sur Mn,1(R) (on parle alors d’optimisation par les moindres carrés).

1. Montrer que X∗ réalise ce minimum si et seulement si A⊺AX∗ = A⊺B (équation normale).

2. Si rg(A) = p, montrer que l’équation normale admet une unique solution.
Indication : Ker(A) = Ker(A⊺A) d’après l’exercice 19.

16.4 Exercices plus techniques

Exercice 26 (adjoint d’un endomorphisme). Soit (E, ⟨·, ·⟩) un espace préhilbertien réel et f dans L(E).

1. On suppose qu’il existe g dans L(E) tel que

∀(x, y) ∈ E2, ⟨f(x), y⟩ = ⟨x, g(y)⟩.

Montrer que g est alors unique. Quand il existe, g se note f∗ et s’appelle l’adjoint de f .

2. Montrer que si E est de dimension finie, alors tout endomorphisme f admet un adjoint.

3. On suppose toujours E de dimension finie n, et on considère B = (e1, . . . , en) une base ortho-
normée de E. Si M désigne MatB(f), déterminer MatB(f∗).

4. Exemple 1. On munit Mn(R) de son produit scalaire canonique (rappeler sa définition à l’aide
de la trace). Si A et B sont deux matrices de Mn(R), on considère l’application M 7−→ AM−MB
qui est évidement linéaire de Mn(R) dans lui-même. Déterminer son adjoint.
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5. Exemple 2. On munit C([0, 1],R) de son produit scalaire canonique (f, g) 7→
∫ 1
0 fg. Pour tout f

dans C([0, 1],R) on note Φ(f) la fonction de [0, 1] dans R définie par

∀x ∈ [0, 1], Φ(f)(x) =

∫ x

0
f(t) dt.

Montrer que Φ est un endomorphisme de C([0, 1],R) qui admet un adjoint.

6. Exemple 3. On munit R[X] du produit scalaire (P,Q) 7→
∫ 1
0 P(t)Q(t)dt. Montrer que P 7→ P(0)

est un endomorphisme de R[X] n’ayant pas d’adjoint (se servir de l’exercice 13).
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Des endomorphismes remarquables des espaces
euclidiens 17

✓ Avoir compris le lien entre isométrie linéaire et ma-
trice orthogonale.

✓ Savoir démontrer que f(V⊥) = f(V)⊥ si f est une
isométrie.

✓ Avoir compris que la relation M⊺M = In signifie ni
plus ni moins que les colonnes de M forment une
BON de Mn,1(R).

✓ Connaître la description de O2(R) et SO2(R).
✓ Savoir définir les notions de produits mixte et vecto-

riel. Connaître l’interprétation géométrique de ces
produits.

✓ Savoir définir une rotation dans l’espace, et savoir
décrire ses éléments caractéristiques.

✓ Avoir compris le lien entre endomorphisme symé-
trique et matrice symétrique.

✓ Savoir décrire les isométries symétriques.
✓ Savoir décrire les projections symétriques.
✓ Connaître parfaitement le théorème spectral.

♠ Croire qu’en dimension infinie, une isométrie est
toujours bijective (elle est seulement injective en
général).

♠ Croire qu’une matrice de déterminant 1 ou −1 est
une matrice orthogonale.

♠ Parler d’angle d’une rotation dans l’espace, sans
avoir orienté la droite de ses invariants.

♠ Croire qu’une matrice de SO3(R) est de la formeÑ
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

é
: elle n’est qu’orthosem-

blable à cette matrice.

♠ Oublier la dimension de Sn(R).

♠ N’énoncer que la moitié du théorème spectral en
disant que toute matrice symétrique réelle est dia-
gonalisable : c’est beaucoup plus fort que ça !

♠ Croire que le théorème spectral est valable pour les
matrices symétriques complexes.

17.1 Exercices de base

Exercice 1 Soit E un espace euclidien et f dans O(E) diagonalisable. Montrer que f est une symétrie.

Exercice 2 (Une isométrie non surjective) On munit R[X] du produit scalaire ⟨P,Q⟩ =
∞∑
n=0

pkqk (où

pk et qk sont les coefficients de degré k de P et Q). Montrer que l’application f : P 7→ XP est une
isométrie vectorielle, mais qu’elle n’est pas surjective.

Exercice 3 Soit θ un réel. Pourquoi est-il très facile d’inverser la matrice

(
1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

)
?

Exercice 4 (École navale). On munit R2 de sa structure euclidienne orientée canonique. On note s la
réflexion (vectorielle) par rapport à la droite D d’équation 2x+ 3y = 0.

Déterminer l’expression analytique de s, c’est-à-dire s(x, y) en fonction de x, y.

Exercice 5 (École navale). On munit R3 de sa structure euclidienne orientée canonique. Déterminer
analytiquement la réflexion vectorielle s par rapport au plan P d’équation 2x+ y − z = 0.

Exercice 6 (Centrale-Supélec, extrait). Montrer que le plus petit sous-espace vectoriel de M2(R) conte-
nant SO2(R) est ßÅ

a b
−b a

ã
: (a, b) ∈ R2

™
.

Exercice 7 On pose A =
1

3

(
2 2 −1
−1 2 2
2 −1 2

)
. Montrer que A est la matrice d’une rotation et déter-

miner ses éléments caractéristiques.
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Exercice 8 On pose A =
1

7

(
6 3 ∗
−2 6 ∗
3 ∗ ∗

)
. Compléter A pour que ce soit la matrice d’une rotation.

Déterminer ses éléments caractéristiques.

Exercice 9 (rotations et produit vectoriel). Soit E un espace euclidien orienté de dimension 3.

1. Si R est une rotation vectorielle de E, montrer que R conserve le produit vectoriel, c’est-à-dire
∀(x, y) ∈ E2, R(x ∧ y) = R(x) ∧ R(y).

2. Réciproquement, si f un endomorphisme non nul de E qui préserve le produit vectoriel, montrer
que f est une rotation.

Exercice 10 (antirotation). On pose A =
1

3

Ñ
2 1 2
2 −2 −1
−1 −2 2

é
. Montrer que A ∈ O−

3 (R) et donner

ses éléments caractéristiques.

Exercice 11 Soit n dansN∗ et A dans Mn(R). On munit Mn(R) de son produit scalaire canonique. On

définit l’application fA :
Mn(R) −→ Mn(R)

M 7−→ A ·M⊺ ·A.
Montrer que f est un endomorphisme autoadjoint

de Mn(R). Trouver une matrice A pour laquelle fA est positif et une matrice A′ pour laquelle fA′ n’est
pas positif.

Exercice 12 Soit n dans N∗ et A dans Mn(R), espace qui est muni de sa structure euclidienne ca-
nonique. Donner une condition nécessaire et suffisante sur A pour que M 7→ AM soit une isométrie de
Mn(R).

Exercice 13 (École polytechnique). Soit P le plan vectoriel de R4 engendré par u = (1, 0,−1, 1) et
v = (0, 2,−3, 1).

1. Décrire P par un système de deux équations linéaires.

2. Déterminer la projection orthogonale du point M = (1, 1, 1, 1) sur P.

Remarque. Malgré la simplicité de cet exercice, le jury rapporte qu’il a mis en difficulté la plupart des
candidats.

17.2 Les grands classiques

Exercice 14 Soit n un entier naturel non nul et A dans An(R).

1. Montrer que si F est un sous-espace stable par A, alors F⊥ aussi.

2. Montrer que A est semblable à une matrice de la forme
Å

0 0

0 A′

ã
où A′ est antisymétrique

inversible. En déduire que rg(A) est pair.

Exercice 15 Soit E un espace euclidien et f un endomorphisme autoadjoint de E. Démontrer que
Ker(f) et Im(f) sont supplémentaires et orthogonaux.

Exercice 16 Soit E un espace euclidien.

1. Montrer que l’ensemble des projections orthogonales est une partie fermée-bornée de L(E).

2. Montrer que l’ensemble des symétries orthogonales est une partie fermée-bornée de L(E).

3. Montrer que ces deux ensembles sont en bijection.

Exercice 17 (la plus grande valeur propres). Soit f un endomorphisme autoadjoint d’un espace eucli-
dien E. On note λ1 ⩾ λ2 ⩾ . . . ⩾ λn ses valeurs propres. Démontrer que

λ1 = max
∥x∥=1

⟨f(x), x⟩.
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Exercice 18 (Mines-Ponts, Centrale-Supélec). Soit E un espace euclidien et f dans L(E) préservant
l’orthogonalité :

∀(x, y) ∈ E2, x ⊥ y =⇒ f(x) ⊥ f(y).

1. (lemme du losange) Si u et v sont unitaires, montrer que u+ v ⊥ u− v.
2. Démontrer qu’il existe k > 0 tel que ∀x ∈ E, ∥f(x)∥ = k∥x∥.
3. En déduire qu’il existe g dans O(E) tel que f = kg.

Exercice 19 (matrice d’une forme bilinéaire). Soit E un R-espace vectoriel de dimension finie n. On
note B= (e1, . . . , en) une base de E. Si φ : E2 → R est une forme bilinéaire sur E, on pose

MatB(φ) =
(
φ(ei, ej)

)
1⩽i,j⩽n

et on dit que c’est la matrice de φ dans la base B.
1. Montrer que si X et Y sont les colonnes des coordonnées de deux vecteurs x et y dans la base

B, alors φ(x, y) = X⊺AY où A = MatB(φ).
2. Si A et A′ représentent φ dans deux bases différentes, montrer qu’il existe P dans GLn(R) telle

que A = PA′P⊺ (on dit que A et A′ sont congruentes).
3. Montrer que φ est symétrique si et seulement si MatB(φ) est symétrique.
4. Montrer que φ est un produit scalaire si et seulement si MatB(φ) ∈ S++

n (R).

Exercice 20 (quasi réduction simultanée). Soit n dans N∗, A dans S++
n (R) et B dans Sn(R).

1. Justifier que φ : (X,Y) 7→ X⊺AY est un produit scalaire sur Mn,1(R).
2. En déduire qu’il existe P dans GLn(R) et D diagonale telles que A = P⊺P et B = P⊺DP

17.3 Les exercices plus techniques

Exercice 21 (Mines-Ponts). Soit a un réel. Dans l’espace M2(R) (muni d’une norme quelconque),
déterminer

lim
n→∞

Å
1 − a

n
a
n 1

ãn

.

Indication : remarquer que la matrice sous la limite est « presque » une matrice de rotation.

Exercice 22 (Isométries d’un espace euclidien). Soit E un espace euclidien et f : E→ E une applica-
tion telle que f(0E) = 0E et ∥f(x)− f(y)∥ = ∥x− y∥ pour tous x et y dans E.

1. Montrer que f est linéaire et que f ∈ O(E).
Indication. On pourra montrer que ∥f(λx)− λf(x)∥2 = 0 et ∥f(x+ y)− f(x)− f(y)∥2 = 0

quel que soit (λ, x, y).
2. Que peut-on dire si on enlève l’hypothèse f(0E) = 0E ?

Exercice 23 (Centrale-Supélec). Soit n dans N∗ et V un sous-espace vectoriel de Mn(R) ne contenant
que des matrices dont le spectre (réel) est ou bien vide, ou bien réduit à {0}.

1. Montrer que dimV ⩽ n(n−1)
2 .

Indication : quelles sont les matrices symétriques appartenant à V ?
2. Prouver que cette inégalité est optimale.

Euclide d’Alexandrie David Hilbert

∼ 300 av. J.-C. (1862-1943)
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Des variables aléatoires à densité (∗) 18
18.1 Exercices de base

Exercice 1 Soit λ un réel strictement positif. Si A ; E(λ), on considère le polynôme aléatoire

X2 + 2(A− 2)X + 2A− 4.

Quelle est la probabilité que P ait ses racines réelles ?

Exercice 2 Soit λ > 0 et X ; E(λ).
1. Montrer que X est sans mémoire, c’est-à-dire ∀s, t > 0, P(X>s)(X > s+ t) = P(X > t).
2. Réciproquement, si Y est une VAR continue sans mémoire, presque sûrement positive et telle

que FY(x) < 1 pour tout x ∈ R+, montrer que Y suit une loi exponentielle, dont on précisera
le paramètre λ > 0.

On pourra utiliser le résultat classique de Sup : les seules fonctions continues f : R → R∗
+ telles que

f(x+ y) = f(x)f(y) pour tous x et y sont de la forme x 7→ eax pour un certain réel a.

Exercice 3 Soit X ; U(0, 1). Montrer que le couple aléatoire (X,X) n’admet pas de densité.

Exercice 4 Dans une station-service, la demande hebdomadaire en essence (en millier de litres) est
une variable aléatoire X de densité f : x 7→ c(1− x)31[0,1], où c > 0 est une constante.

1. Déterminer la constante c.
2. La station est réapprovisionnée chaque lundi à 20 heures. Quelle doit être la capacité de la

citerne pour que la probabilité d’avoir une pénurie soit inférieure à 10−5 ?

Exercice 5 (loi de Laplace) On dit qu’une variable aléatoire suit une loi de Laplace quand elle admet
x 7→ 1

2e
−|x| pour densité.

1. Vérifier qu’il s’agit effectivement d’une densité de probabilité.
2. Si X suit une loi de Laplace, montrer qu’elle admet des moments à tous les ordres, et les calculer.

18.2 Détermination de lois

Exercice 6 Montrer que l’inverse d’une variable aléatoire suivant la loi de Cauchy C(0, 1) suit encore
la loi C(0, 1).

Exercice 7 (stabilité des lois normales)

1. Soit X ; N(0, 1). Montrer que ∀t ∈ R, φX(t) = e−
t2

2 . On pourra résoudre une EDL1.
2. Soit X ; N(μ, σ2) et Y ; N(m, s2) que l’on suppose indépendantes. Montrer que X + Y ;

N(μ+m,σ2 + s2).

Exercice 8 (stabilité des lois gamma) Les VAR considérées sont toutes définies sur un même univers.
Soit ν et ν′ dans R∗

+.

1. Si X ; γ(ν), montrer que ∀t ∈ R, φX(t) = (1 + t2)−
ν

2 eiνArctan(t). Si ν ∈ N∗, montrer de plus que
φX(t) =

Ä
1+it
1+t2

ä
ν

pour tout t ∈ R.

2. En déduire que si X ; γ(ν) et Y ; γ(ν′) sont indépendantes, alors X+Y ; γ(ν+ ν′).
3. Quelle est la loi de X1 + . . .+Xn si les Xi sont indépendantes suivant toutes E(1) ?
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Exercice 9 On dit qu’une variable aléatoire réelle X suit la loi de l’Arc-sinus A quand elle admet
f : x 7→ 1

π

√
1−x2

1]−1,1[(x) comme densité.

1. Vérifier que cette fonction est bien une densité de probabilité et déterminer la fonction de
répartition F correspondante.

2. Si Θ ; U(]− π, π]), montrer que cosΘ et sinΘ suivent la loi A.

Exercice 10 Si X et Y sont indépendantes de densités respectives fX et fY, on sait que X+Y a pour
densité fX ∗ fY.

1. Expliquer pourquoi fX + fY ne peut jamais être la densité de X+Y.

2. Après avoir justifié que 1
2(fX+fY) était elle aussi une densité, déterminer une variable aléatoire

Z ayant cette densité.

3. Plus généralement, si λ ∈ ]0, 1[, déterminer une VAR Z ayant λfX + (1− λ)fY comme densité.

Exercice 11 Soit n dans N∗. On appelle loi du khi-deux à n degrés de liberté la loi de X2
1 + . . .+X2

n

quand X1, . . . ,Xn sont des variables aléatoires indépendantes suivant toutes la loi normale N(0, 1).

1. Déterminer une densité de X2
1 et démontrer que c’est la densité de 2Y1 si Y1 ; γ(ν) avec ν bien

choisi.

2. En déduire une densité de χ2(n) (on pourra se servir de la stabilité des loi gamma). Que retrouve-
t-on si n = 2 ?

Exercice 12 Soit X et Y deux VAR indépendantes suivant la loi normale N(0, 1). Montrer que X
Y (qui

est définie presque sûrement partout) suit la loi de Cauchy C(0, 1).

18.3 Détermination d’espérance et de variance

Exercice 13 Soit X ; N(0, 1).

1. Déterminer la loi et l’espérance de Y = X|X|.
2. Calculer la covariance Cov(X,Y).

Exercice 14 Soit X une variable aléatoire positive admettant une densité f . On suppose que X admet
une espérance. Si FX désigne sa fonction de répartition, démontrer que

E(X) =

∫ +∞

0
(1− FX(x)) dx.

Remarque. Cette formule est l’exacte généralisation de E(X) =
∞∑
n=1

P(X ⩾ n), qui a été démontrée pour

les variables aléatoires à valeurs dans N.

Exercice 15 On lance une fléchette sur une cible circulaire représentée par le disque unité D(0, 1). On
modélise la situation en disant que la probabilité que la fléchette se plante dans une partie A de D(0, 1)
(supposée être borélienne...) est proportionnelle à l’aire de A.

1. Si X est la variable aléatoire mesurant la distance de la fléchette au centre de la cible, montrer
que X admet une densité.

2. Calculer E(X) et σX. Et la médiane de X ?
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Exercice 16 Une grenouille avance (sans jamais reculer) en faisant des bonds indépendants, aléatoi-
rement uniformes entre 0 et 1 mètre.

1. Quelle est la distance moyenne après deux sauts ?

2. De façon surprenante, établir que le nombre moyen de sauts nécessaires pour dépasser 1 mètre
n’est pas 2.

Exercice 17 Soit n dans N∗ et X1, . . . ,Xn un échantillon finie d’une même VAR X que l’on suppose
admettre une densité f : les variables aléatoires X1, . . . ,Xn sont donc indépendantes, de même loi dont
f est une densité. On pose alors

Sn = max(X1, . . . ,Xn) et In = min(X1, . . . ,Xn).

1. Déterminer les fonctions de répartition des variables aléatoires Sn et In et montrer qu’elles ont
des densités que l’on explicitera.

2. Tracer ses densités pour n = 3 et X ; U(0, 1).

3. Déterminer E(Sn) et E(In) quand X ; E(λ). Donner un équivalent de E(Sn) quand n→∞.

Exercice 18 A et B se fixent un rendez-vous dans un bar branché du 6e arrondissement de Paris, entre
0 h et 1 h du matin. On suppose que chacun arrive à un instant aléatoire suivant la loi U(0, 1).

1. Calculer le temps moyen d’attente de la première personne arrivée sur les lieux.

2. On note X1 et X2 les heures d’arrivée de la 1re personne et de la 2e personne. Déterminer les
lois de X1 et X2 ainsi que leur coefficient de corrélation ρX,Y.

3. A veut bien attendre au maximum 30 min avant de repartir s’il ne voit pas arriver son compère.
B est moins patient : il n’attend que 15 min tout au plus. Quelle est la probabilité que nos deux
lascars se voient ?

18.4 Modes de convergence

Exercice 19 Pour tout entier non nul n, on suppose que Xn ; U(0, 1
n). A-t-on convergence en loi de

(Xn)n∈N∗ ? Et si Xn ; U(0, n) ?

Exercice 20 Soit (Xn)n∈N∗ un échantillon de la loi U(0, 1). On pose Mn = max(X1, . . . ,Xn) et on
considère Yn = n(1−Mn). Démontrer que Yn

L−→
n→∞

E(1).

Exercice 21 On fait tomber une boîte de 9000 dés (à six faces).

1. Estimer la probabilité d’obtenir un nombre de « 6 » compris entre 1 450 et 1 550 grâce au
théorème limite central.

2. Comparer avec ce que donnerait l’inégalité de Bienaymé-Tchebychev.

3. À l’aide d’un ordinateur, calculer la véritable valeur de cette probabilité.

Exercice 22 (théorème de Khintchine). On souhaite baisser les hypothèses de la loi faible des grands
nombres. Soit (Xn)n∈N∗ une suite de VAR (à densité ou discrètes) indépendantes, admettant un moment
d’ordre 1 (seulement !) mais suivant toutes la même loi qu’une VAR X donnée.

1. Donner l’expression de la fonction caractéristique φn de Mn = X1+...+Xn
n en fonction de φX.

2. Donner le développement limité à l’ordre 1 de φX en 0.

3. En déduire la limite de φn(t) quand n tend vers +∞, et conclure par le théorème de Lévy.
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Des distributions (∗) 19
19.1 Exercices de base

Exercice 1 Parmi les fonctions de D dans R suivantes, dire lesquelles sont des distributions.
1. φ 7−→
∫ 1
0 φ(t) dt.

2. φ 7−→
∫ 1
0 |φ(t)| dt.

3. φ 7−→
N∑

n=0
φ
(n)(0) (où N ∈ N).

4. φ 7−→
∞∑
n=0
φ
(n)(0).

5. φ 7−→
∞∑
n=0
φ(n).

6. φ 7−→
∫

R
φ(t)
|t|α dt (où α ∈ R).

Exercice 2 Pour tout entier n, on pose fn = x 7→ sin(nx).
1. Montrer que (fn)n∈N ne converge pas simplement sur R.
2. Montrer cependant que (fn)n∈N converge au sens des distributions (i.e. dans D′) vers 0.

Exercice 3 On note Π l’indicatrice de [−1, 1] (fonction porte). Pour tout entier n et tout réel x, on
pose

fn(x) = nΠ(nx) et gn(x) = n2Π(nx).

1. Montrer que (fn)n∈N converge au sens des distributions (i.e. dans D′) vers la distribution de
Dirac δ0.

2. Montrer que (gn)n∈N ne converge pas dans D′.

Exercice 4 Dériver au sens des distributions les fonctions suivantes.
1. La fonction valeur absolue x 7→ |x|.
2. La fonction porte Π = 1[−1,1].
3. La fonction signe sgn (qui vaut 1 sur R∗

+, −1 sur R∗
− et 0 en 0).

Exercice 5 (moment dipolaire). On pose, pour tout entier non nul n, Πn = 1[− 1
n
, 1
n
]. Montrer que

(Π′
n)n∈N∗ converge dans D′.

Exercice 6 Soit f dans C∞(R,R) et T dans D′. Montrer que (fT)′ = f ′T+ fT′.

Exercice 7 Soit T dans D′. Montrer que la suite
Å
τ− 1

n
T−T

1
n

ã
n∈N∗

converge dans D′ vers T′.

19.2 Transformée de Fourier

Exercice 8 Montrer que F : S′ → S′ est continue.

Exercice 9 Si a ∈ R et T ∈ D′, déterminer F[τaT] et F[μaT].

Exercice 10 Soit ν0 un réel. Déterminer F[e2iπν0x] où e2iπν0x désigne Tf , où f = x 7→ e2iπν0x.
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De la théorie de Fourier (∗) 20
20.1 Développement en série de Fourier

Exercice 1 Soit T > 0. Expliquer pourquoi il n’existe aucune fonction réelle, T-périodique, continue
par morceaux telle que ses coefficients de Fourier soient an = 1√

n
et bn = 0 pour tout n dans N∗.

Exercice 2 Soit f la fonction paire, définie sur R, 2π-périodique telle que f(x) = 1− 2
π
x pour tout x

dans [0, π].
1. Développer f en série de Fourier.

2. En déduire les valeurs de
∞∑
n=1

1
n2 ,

∞∑
n=0

1
(2n+1)2

et de
∞∑
n=1

1
n4 .

Exercice 3 Montrer que x 7→ x− ⌊x⌋ est périodique. Donner son développement en série de Fourier.

En déduire la valeur de
∞∑
n=1

sin(n)
n .

Exercice 4 Soit f la fonction impaire, définie sur R, 2π-périodique telle que f(x) = x(π − x) pour
tout x dans [0, π].

1. Développer f en série de Fourier.

2. En déduire les valeurs de
∞∑
n=0

(−1)n

(2n+1)3
,

∞∑
n=0

1
(2n+1)6

et de
∞∑
n=1

1
n6 .

Remarque. Les valeurs de ζ(2k) (si k ∈ N∗) sont toutes bien connues. En revanche, celles de ζ(2k+1)
restent mystérieuses. On sait seulement (depuis 1963) que ζ(3) /∈ Q.

Exercice 5 En se servant de ch, trouver les valeurs de
∞∑
n=1

1
1+n2 et de

∞∑
n=1

1
(1+n2)2

.

Exercice 6 Soit α dans R /∈ Z. On note f la fonction définie sur R, 2π-périodique, telle que f(x) =
cos(αx) pour tout x dans [−π, π].

1. Développer f en série de Fourier.
2. En déduire une formule due à Euler :

∀x ∈ R \Z, cot(πx) =
1

πx
+

1

π

∞∑
n=1

2x

x2 − n2
.

20.2 Grands classiques

Exercice 7 (inégalité de Wirtinger). Soit f : R→ C admettant une dérivée f ′ continue par morceaux.

On suppose que
∫ 2π

0
f(t) dt = 0. Montrer que

∫ 2π

0
|f ′(t)|2 dt ⩾

∫ 2π

0
|f(t)|2 dt. Étudier le cas d’égalité.

En déduire que ∥f∥2∞ ⩽
π

6

∫ 2π

0
f ′(t)2 dt.

Exercice 8 Soit f la fonction impaire et 2π-périodique définie par f(x) = π−x
2 si x ∈ ]0, π[ et soit g

définie sur R par g(x) = f(x+ 1)− f(x− 1).
1. Déterminer les séries de Fourier de f et g.

2. En déduire que
∞∑
n=1

sin(n)
n =

∞∑
n=1

sin2(n)
n2 .

Remarque amusante. Il est facile de montrer (ipp) que
∫+∞
0

sin(t)
t dt =
∫+∞
0

sin2(t)
t2

dt.
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Alphabet grec A
Α α

alpha
Β β

bêta
Γ γ
gamma

Δ δ
delta

Ε ε
epsilon

Ζ ζ
zêta

Η η
êta

Θ θ
thêta

Ι ι
iôta

Κ κ
kappa

Λ λ
lambda

Μ μ
mu

Ν ν
nu

Ξ ξ
ksi

Ο ο
omicron

Π π
pi

Ρ ρ
rhô

Σ σ
sigma

Τ τ
tau

Υ υ
upsilon

Φ φ
phi

Χ χ
khi

Ψ ψ
psi

Ω ω
ômega

Attention à la position des lettres β, γ, μ, ρ,φ, χ,ψ : elles descendent sous la ligne, comme le font les
lettres p ou q. De plus, en cursif, γ forme une boucle bien visible (ne pas écrire une sorte de y)

La lettre σ s’écrit ς en fin de mot uniquement : cette graphie n’est pas utilisée en sciences.

La lettre π s’écrit aussi ϖ, surtout en écriture manuscrite : parfois utilisée en Physique.

Quelques étymologies grecques en Mathématiques.
— μανθάνω : apprendre. Ex : mathématique. — θεωρέω : contempler. Ex : théorème.
— ἡ μορφή : la forme. Ex : morphisme. — τὸ εἶδος : l’aspect extérieur. Ex : ellipsoïde.
— ἔνδον : à l’intérieur. Ex : endomorphisme. — ἡ σύμπτωσις : la rencontre. Ex : asymptote.
— ἴσος : égal. Ex : isomorphisme. — ὁ κύκλος : le cercle. Ex : cycloïde.
— ἀυτός : lui-même. Ex : automorphisme. — τὸ μέτρον : la mesure. Ex : isométrie.
— πολύς : nombreux. Ex : polynôme. — βαρύς : lourd. Ex : barycentre.
— μόνος : un seul. Ex : monôme. — ὀρθός : droit. Ex : orthogonal.
— ὑπό : en dessous. Ex : hypothèse. — ὑπέρ : au dessus. Ex : hyperbole.
— ἡ βολή : action de lancer. Ex : parabole. — ἐπί : sur. Ex : épimorphisme.
— παρά : près de, le long de, chez. Ex : parabole. — ἀλλήλων : les uns les autres. Ex : parallèle.
— τὸ γένος : race, naissance. Ex : générateur. — ὁ τόμος : le morceau coupé. Ex : dichotomie.
— ὁ ἀριθμός : le nombre. Ex : arithmétique. — ἡ ἕδρα : Ex : le siège. Ex : polyèdre.
— ὁ τόπος : le lieu. Ex : topologie. — ὁ χαρακτήρ : l’empreinte. Ex : caractéristique.
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Formulaire de Trigonométrie circulaire B

Relation « de Pythagore ».
cos2(a) + sin2(a) = 1

Formules de transformations.

cos(a+ π) = − cos(a) sin(a+ π) = − sin(a)

cos(−a) = cos(a) sin(−a) = − sin(a)

cos
(
π

2 − a
)
= sin(a) sin

(
π

2 − a
)
= cos(a)

cos
(
a+ π

2

)
= − sin(a) sin

(
a+ π

2

)
= cos(a)

Formules d’addition.
« cosinus = non mélange-non respect » et « sinus = mélange-respect ».

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

sin(a+ b) = sin(a) cos(b) + sin(b) cos(a)

sin(a− b) = sin(a) cos(b)− sin(b) cos(a)

tan(a+ b) =
tan(a) + tan(b)

1− tan(a) tan(b)
tan(a− b) =

tan(a)− tan(b)

1 + tan(a) tan(b)

Formules de duplication.

cos(2a) = cos2(a)− sin2(a) = 2 cos2(a)− 1 = 1− 2 sin2(a)

sin(2a) = 2 sin(a) cos(a)

tan(2a) =
2 tan(a)

1− tan2(a)
.
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Formules de l’arc-moitié. Si θ ∈ ]− π, π[ on pose t = tan(θ/2). Alors,

cos(θ) =
1− t2

1 + t2
, sin(θ) =

2t

1 + t2
, tan(θ) =

2t

1− t2
.

Formules de linéarisation.

cos(a) cos(b) =
cos (a− b) + cos(a+ b)

2

sin(a) sin(b) =
cos (a− b)− cos(a+ b)

2

sin(a) cos(b) =
sin (a− b) + sin(a+ b)

2
.

En particulier, cos2(a) =
1 + cos(2a)

2
et sin2(a) =

1− cos(2a)

2
.

Formule du déphasage. Si a, b sont des réels,

a cos(x) + b sin(x) = r cos(x− θ)

où r = |a+ bi| et θ = arg(a+ bi).
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Fonctions usuelles C
Tracer une courbe demande :

— des axes proprement dessinés à la règle avec les unités marquées,
— de dessiner les tangentes remarquables et asymptotes avant la courbe,
— un graphique soigné de la courbe en précisant les intersections avec les axes.
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Formulaire de dérivées D
Df f(x) f ′(x) Df ′

R∗
+ xα (α ∈ R) αxα−1 R∗

+

R∗ 1

x
= x−1 (−1)x−1−1 = − 1

x2
R∗

R+
√
x =

si x>0
x

1
2

1

2
x

1
2
−1 =

1

2
√
x

R∗
+

R+
n
√
x =

si x>0
n∈N∗

x
1
n

1

n
x

1
n
−1 =

1

n
n
√
xn−1

R∗
+

R |x| x

|x|
R∗

R ex ex R

R∗
+ ln(x)

1

x
R∗

+

Fonctions hyperboliques
Df f(x) f ′(x) Df ′

R ch(x) =
ex + e−x

2
sh(x) R

R sh(x) =
ex − e−x

2
ch(x) R

R th(x) =
ex − e−x

ex + e−x
1− th2(x) =

1

ch2(x)
R

Fonctions circulaires
Df f(x) f ′(x) Df ′

R cos(x) −sin(x) R

R sin(x) cos(x) R

x ̸≡ π

2 [π] tan(x) 1 + tan2(x) =
1

cos2(x)
x ̸≡ π

2 [π]

[−1, 1] Arccos(x)
−1√
1− x2

]− 1, 1[

[−1, 1] Arcsin(x)
1√

1− x2
]− 1, 1[

R Arctan(x)
1

1 + x2
R
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Formulaire de primitives E
La notation (vieillotte et peu rigoureuse) «

∫

f(x)dx » désigne une primitive quelconque de la fonc-

tion continue f sur un intervalle. On ne l’utilise que dans des formulaire comme celui qui va
suivre : n’écrivez pas des intégrales sans bornes sur vos copies !

∫

dx

x
= ln(|x|)

∫

xαdx =
xα+1

α+ 1
, (α ̸= 1)

∫

cos(x)dx = sin(x)

∫

sin(x)dx = − cos(x)

∫

dx

cos2(x)
= tan(x)

∫

dx

sin2(x)
= − cot(x) = − cos(x)

sin(x)

∫

dx

cos(x)
= ln

∣∣∣tan(x
2
+
π

4

)∣∣∣ ∫ dx

sin(x)
= ln

∣∣∣tan(x
2

)∣∣∣
∫

tan(x)dx = − ln(| cos(x)|)
∫

th(x)dx = ln(ch(t))

∫

ch(x)dx = sh(x)

∫

sh(x)dx = ch(x)

∫

emxdx =
1

m
emx, (m ∈ C∗)

∫

axdx =
ax

ln(a)
, (a > 0, a ̸= 1)

∫

dx

1 + x2
= Arctan(x)

∫

dx√
1− x2

= Arcsin(x)
=−Arccos(x)+ π

2

Exemple. Pour trouver
∫

dx

5 + x2
on écrit
∫

dx

5 + x2
=

1

5

∫

dx

1 +
Ä

x√
5

ä2 , et on fait le changement de

variable t = x√
5
, qui donne dt = dx√

5
. D’où

∫

dx

5 + x2
=

1

5

∫

√
5dt

1 + t2
=

√
5

5
Arctan(t) =

1√
5
Arctan

Å
x√
5

ã
.
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Développements en série entière usuels F
Les DSE0 marqués du symbole (∗) sont à connaître ou à retrouver rapidement. Les autres sont

donnés à titre informatif. On a précisé, pour chaque DSE0, les premiers termes du développement.

Variable complexe

(∗) ez =
∞∑
n=0

1

n!
zn 1 + z + z2

2 + z3

6 + . . . R = +∞

(∗) 1

1− z
=

∞∑
n=0

zn 1 + z + z2 + z3 + . . . R = 1

L’égalité 1
1−z =

∞∑
n=0

zn n’a lieu que lorsque |z| < 1. Il n’a donc aucun sens de dire que
∞∑
n=0

2n = 1
1−2 = −1. Cette identité est cependant vraie dans d’autres mondes que C : dans le corps

ultramétrique Q2 des nombres 2-adiques par exemple.

Variable réelle

Conséquences du DSE de ex

(∗) cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n 1− x2

2 + x4

24 + . . . R = +∞

(∗) sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 x− x3

6 + x5

120 + . . . R = +∞

(∗) ch(x) =

∞∑
n=0

1

(2n)!
x2n 1 + x2

2 + x4

24 + . . . R = +∞

(∗) sh(x) =
∞∑
n=0

1

(2n+ 1)!
x2n+1 x+ x3

6 + x5

120 + . . . R = +∞

Conséquences du DSE de 1
1−x

(∗) 1

1 + x
=

∞∑
n=0

(−1)nxn 1− x+ x2 − x3 + x4 + . . . R = 1

(∗) ln(1 + x) =

∞∑
n=1

(−1)n−1

n
xn x− x2

2 + x3

3 −
x4

4 + . . . R = 1

(∗) 1

1 + x2
=

∞∑
n=0

(−1)nx2n 1− x2 + x4 − x6 + . . . R = 1

(∗) Arctan(x) =
∞∑
n=0

(−1)n

2n+ 1
x2n+1 x− x3

3 + x5

5 −
x7

7 + . . . R = 1

Argth(x) =

∞∑
n=0

1

2n+ 1
x2n+1 x+ x3

3 + x5

5 + x7

7 + . . . R = 1
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La fonction Arctan a beau être définie sur R, le rayon de convergence de sa série entière∑ (−1)n

2n+1 x
2n+1 vaut 1, et non +∞. Ainsi, l’égalité Arctan(x) =

∞∑
n=0

(−1)n

2n+1 x
2n+1 n’a lieu que lorsque

x ∈ ]−1, 1[ (ailleurs, la série diverge).

Conséquences du DSE de (1 + x)α

(∗) (1 + x)α =
∞∑
n=0

α(α− 1) . . . (α− n+ 1)

n!
xn 1 + αx+ α(α−1)

2 x2 + . . .
R = 1 si α ∈ C \N
R = +∞ si α ∈ N

√
1 + x = 1 +

∞∑
n=1

(−1)n−1(2n)!

n!24n(2n− 1)
xn 1 + x

2 −
x2

8 + x3

16 −
5x4

128 + . . . R = 1

1√
1− x2

=
∞∑
n=0

(2n)!

4n(n!)2
x2n 1 + x2

2 + 3x4

8 + 5x6

16 + . . . R = 1

Arcsin(x) =

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1 x+ x3

6 + 3x5

40 + 5x7

112 + . . . R = 1

Notation. Il est d’usage de noter
(
α

n

)
le nombre complexe α(α−1)...(α−n+1)

n! . Par exemple,Ç
1 + i

2

å
=

(1 + i)(1 + i− 1)

2!
= −1

2
+

i

2
.

Si α ∈ N et si n ⩽ α, on retrouve le célèbre coefficient binomial et le DSE écrit ci-dessus n’est autre
que notre bonne vieille formule du binôme (la somme est alors finie).
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