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rentielles linéaires

Savoir définir la continuité et la dérivabilité d’une
fonction de R dans R".
Avoir compris le role des fonctions composantes
pour traduire la continuité ou la dérivabilité d’une
fonction de R dans R".
Savoir dériver y oA, t — A(t) - z, L oy (avec L
linéaire), B(y,,Y,) (avec B bilinéaire). En particu-
lier, savoir dériver sans hésiter ¢ — (v, (t), y5(t)) et
t= v (8) Ayy(t).

_>
Avoir compris ce que cache le symbole f%+ ? -de
représentant une circulation sur une « courbe orien-
tée » BT,

Des fonctions vectorielles et des équations diffé-

Oublier l'orientation sur une courbe sur laquelle on
veut calculer une circulation : le signe en dépend!

Faire une variation de la constante pour des EDL
homogeénes : ce n’est pas du tout 'objet de cette
technique.

Faire une variation de la constante pour des EDL
a coefficients constants. C’est totalement inutile car
on peut trouver une solution particuliére constante !

Essayer d’écrire ’équation caractéristique d’une
EDL scalaire quand celle-ci n’est pas & coefficients
constants : & quoi peut bien ressembler les racines ?
Ce serait des fonctions ?

v' Savoir reconnaitre une équation différentielle qui
n’est pas linéaire.

v' Maitriser le théoréme central : celui de Cauchy-
Lipschitz dans sa version linéaire. Avoir compris
qu’il donne la dimension de ’espace des solutions
de ’équation homogeéne associée.

V' Savoir parfaitement résoudre une EDL1 quelconque
ou une EDL2 & coefficients constants.

v Savoir mettre en place une technique de variation
de la constante pour une EDL1 (pour les EDL2,
rien n’est exigible).

1.1 Fonctions vectorielles

Exercice 1 (théoréeme du moment cinétique). Si M est un point mobile de masse constante m et si A
est un poi T AM dAM . TS

point fixe, le vecteur Ly = AM A {m©g= | est appelé moment cinétique” de M par rapport au
point A.

_>
1. Montrer que 'application L ainsi définie est un torseur, c’est-a-dire vérifie la relation dite de
Varignon (aussi appelée régle de Babar par les petits rigolos) :

VA, VB, Lp= La+BAAR,

%
ou R est un vecteur indépendant de A et B que 'on précisera.

2. Etablir le théoréme du moment cinéti_q_ge : la dérivée (par rapport au temps) du moment ciné-
tique de M par rapport a A vaut Y AM A ?ext.

Exercice 2 1. Soit ©: R — R une fonction dérivable telle que 9(0) = 0. On pose

_ (cosO(t) —sin ﬁ(t))
M) = (sin (t)  cosO(t)
pour tout réel ¢. Calculer M’(0).

2. Plus généralement, si n € IN*, on considére M : R — Jl,(R) dérivable telle que M(0) = I,, et
M(#)T x M(t) = I, pour tout réel t. Montrer que M’(0) est une matrice antisymétrique.

1. En anglais on parle de angular momentum c’est-a-dire « moment angulaire ».



Exercice 3 Soit v : [a,b] — R" un arc paramétré de classe €*. On pose

b
L) = [ vl

1. Soit A et B dans R". Calculer L(y) siy =t~ (1 —t)A +¢B (¢t € [0,1]).

2. Si R,p > 0, déterminer L(y) quand y =t — (Rcos(wt), Rsin(wt), pt) (t € [0,7]). Que retrouve-
t-onsip=0et t=2n7

3. Soit R > 0. Calculer L(y) quand y = ¢ = (Rcos3(t), Rsin®(t)) (¢ € [0, 2n)).

Au vu des premiéres questions, il semblerait que L(y) s’interpréte comme la longueur du support de y.

1.2 Calcul de circulations

Exercice 4 L’espace est muni d’un repére orthonormé direct. Soit ? le champ de vecteurs qui a tout
point M(x, y, z) associe le vecteur de coordonnées (xy, 0, x). Soit aussi les points A(3,0,0), B(0,3,0) et
C(0,0,6). Calculer la circulation de F le long du triangle ABC (avec l'orientation A — B — C).

Exercice 5 Si R > 0, on considére le cercle 67 de centre O de rayon R, parcouru une seule fois dans
le sens direct. Soit alors le champ de vecteurs F définie sur R? \ {(0,0)} par
1 —

2
= OM2 OM (noté 3 ou % en Physique).

(M)

_>
Calculer % . ? -d?. Méme question avec le champ de vecteurs a(M) = ﬁ(*yM@ + xMe_y>)
%R

1.3 Equations différentielles

Exercice 6 Parmi les équations fonctionnelles suivantes, lesquelles sont des équations différentielles ?
Parmi celles-ci, lesquelles sont linéaires (on distinguera les homogénes) ?

L. ¢/ (t) = cos(t)y(t) + sin(t). 2. y/(t) = cos(y(t)) + sin(t). 3.y (t) =y~ (1)
4y"(t) +ty' (1) + 2y(t) = 0. 5.y"(t) +y'(t) +y()* = 0. 6. y'(t) = y"(t)
Ty t) = - 8. y'(t) = fy(t). 9.9'(t) = y(7)

Exercice 7 On considére I’équation différentielle bien connue ' (t) = y(t), mais ou cette fois 'inconnue
est une fonction dérivable sur R* a valeurs dans R. Montrer que ’ensemble des solutions est un R-espace
vectoriel de dimension 2, et expliquer en quoi cela ne contredit pas le théoréme de Cauchy-Lipschitz
linéaire.

Exercice 8 Résoudre y"” + " — 6y = 0.

Exercice 9 Résoudre 3" (z) — 3y () + 2y(z) = e*.

Exercice 10 Résoudre grace a la méthode de variation de la constante :
(1 + 22y (z) — (2% — Dy(z) = —2z.

Exercice 11 Résoudre 22y (x) + 4xy'(x) — (22 — 2)y(x) = 0 ot I'inconnue est définie sur ]0, +oo|.
Indication : on pourra considérer la fonction x — z%y(x).

Exercice 12 (une équation différentielle non linéaire). Une étude sur le comportement d’organismes
vivants placés dans une enceinte close dont le milieu nutritif est renouvelé en permanence a conduit a
modéliser ’évolution de la population par une fonction N : Ry — R telle que

(E) : N = 2N — 0, 0045N?.

Sit > 0 est le temps (en heures), la partie entiére de N(¢) est le nombre d’individus présents dans
Penceinte a 'instant ¢ et on donne N(0) = 1000.



1. On suppose que N ne s’annule pas sur Ry. Montrer que N est solution de (E) si et seulement si

% est solution d’une équation différentielle linéaire (E').
2. Résoudre (E') puis (E) et déterminer la fonction N de I’énoncé.
3. Etudier les variations de N.

4. Déterminer l'instant ¢ty ou la population aura diminué de moitié.
Exercice 13 (CCINP). On considére I’équation différentielle non normalisée suivante :
(E) : [2ly'(2) + y(z) = 2?,

ol y est & valeurs dans R.
1. Résoudre (E) sur les intervalles RY et R .

2. Résoudre (E) sur R tout entier (probléme de raccordement des solutions).

Exercice 14 (CCINP). Trouver toutes les fonctions f et g continues sur R vérifiant

x x
Va:E]R,[J f)dt =z -1+ g(x) A f gtydt=x — 1+ f(z)| .

0 0
2'(t) = cos(t)x(t) — sin(t)y(t),
y'(t) = sin(t)z(t) + cos(t)y(t).
Si (x,y) est un couple de solutions, montrer que = + iy vérifie une équation différentielle que 'on ré-
soudra. En déduire toutes les solutions de ce systéme.

Exercice 15 (CCINP). On souhaite résoudre le systéme différentiel {

Exercice 16 (CCINP). Soit le systéme différentiel linéaire suivant :

¥ = r+y+z, z(0) = 3,
y = x—y+2z  avec les conditions initiales y(0) = 1,
7 = r4y-—z, z2(0) = 1.

1. On suppose qu’il existe une solution, c¢’est-a-dire trois fonctions z,y, z dérivables vérifiant ce
systéme. Montrer que les points M; de coordonnées (z(t),y(t),z(t)) (quand ¢ décrit R) appar-
tiennent tous & un méme plan P dont on donnera une équation.

2. Trouver x,y et z.

Exercice 17 (CCINP). On souhaite résoudre ’équation fonctionnelle

1

®) :viery, f0=r(7),

ot 'inconnue f est une fonction de classe €' sur R* a valeurs dans C.
1. Si f est solution, montrer qu’elle est de classe 62 et vérifie une certaine EDL2 (E').

2. Chercher les complexes o tels que ¢ — t* soit solution de (E’), puis résoudre (E).
Exercice 18 (classique). On considére une fonction f: R — R qui est additive, c’est-a-dire telle que
V(z,y) € R?, [z +y) = f(a)+ f(y).

1. Soit a un réel. Montrer que 'application linéaire = +— ax est additive.

2. Réciproquement, considérons une fonction additive f : R — R. On suppose de plus que f est
dérivable sur R. Montrer que f est linéaire.

3. En déduire toutes les fonctions dérivables g : R — R telles que g(z + y) = g(z)g(y) pour tous
réels x et y.

4. On ne suppose plus f dérivable.



(a) Démontrer que f(0) = 0, puis qu’il existe un réel a telle que f(n) = an pour tout entier n.
Montrer alors que f(x) = ax pour tout x dans Q.

(b) Si maintenant f est supposée continue, démontrer que Vx € R, f(z) = ax, c’est-a-dire que f
est linéaire.

(¢) (%) On voit R comme un Q-espace vectoriel et on admet que @, qui en est un sous-espace
vectoriel, admet un supplémentaire I. Construire une application f : R — R additive, mais
pas linéaire.

Exercice 19 (Centrale, extrait). Soit f une solution non identiquement nulle d’'une EDL2 homogeéne.
Montrer que les zéros de f sont isolés, c’est-a-dire si ¢y est tel que f(ty) = 0, alors il existe € > 0 tel
que f ne s’annule pas sur |tg — €, to + €[.

Exercice 20 (Centrale). Soit f : R — R une application continue et l-périodique. On considére
I’équation différentielle

(B): o(t) + f(Da(t) = 0

1. Rappeler pourquoi on peut affirmer I’existence deux solutions u et v de (E) qui ne soient pas
proportionnelles. On pose alors, pour tout réel ¢,

-2 46)

2. Montrer qu’il existe A dans Jl2(R) telle que M(t + 1) = A x M(t) pour tout réel ¢.

3. Si w(t) désigne det M(t), établir que w est une fonction constante, et en déduire det A.

Exercice 21 (x) On se propose de mettre en évidence une propriété géométrique des courbes intégrales
d’une EDLI. Soit I un intervalle de R et soit (E) I’équation différentielle

(E) : a(2)y(2) + b(z)y(z) = c(z)
ou les fonctions a, b et ¢ sont continues de I dans R, a ne s’annulant pas. Soit aussi z¢ dans I.

Montrer que les tangentes aux courbes intégrales aux points d’abscisse xg sont ou bien concourantes
ou bien toutes paralléles.

Sur les graphiques ci-dessous on a représenté des courbes intégrales de l’équation différentielle
y'(x) = (1 — 2?)y(z) + cos(z). On constate que les tangentes en o = —1 sont toutes paralléles alors
que celles en xg = 0.5, par exemple, sont concourantes.




De I’Algébre linéaire (partie 1)

Savoir montrer qu’une partie d’un espace vectoriel
en est un sous-espace vectoriel.

Savoir montrer que des sous-espaces sont en somme
directe.

Savoir montrer qu’une famille de vecteurs est libre,
liée, génératrice.

Savoir montrer qu’une application entre deux es-
paces vectoriels est linéaire. Savoir déterminer son
noyau, son image (par exemple en en donnant une
base).

Savoir expliciter la matrice d’une application li-
néaire dans des bases.

Savoir expliquer comment est définie la trace d’un
endomorphisme en dimension finie.

Maitriser tout ce qui concerne les changements de
bases : X = PX’, M = PM'P !, etc.

Croire que trois sous-espaces Fi,Fq,F3 sont en
somme directe si et seulement si leurs intersections
2 a 2 sont réduites a {0}.

Confondre « étre en somme directe » avec « étre
supplémentaires ».

Ecrire « on a E@® F » pour dire « E et F sont
en somme directe » : cela a autant de sens que
d’écrire « on a 1 + 2 ». L’écriture correcte est
«E+F=E®F »

Vérifier que f(0) = 0 pour montrer que f est li-
néaire : c’est automatique, nul besoin de le vérifier !
En revanche, si f(0) # 0, on peut en conclure que
f n’est pas linéaire.

Croire que la dimension d’un produit de sous-
espaces est le produit des dimensions d’iceux. Bien
que tentante, cette formule est fausse (penser a
R? =R x R).

2.1 Sous-espaces vectoriels

Exercice 1 Le sous-ensemble {(z,y,2) € R3 | 22 +y? — 22 = 0} est-il un sous-espace vectoriel de R3?
Et pour {(z,y,2) € R3 | 22 +y? + 22 = 0} ?

Exercice 2 1. Dans R3, si a, b, ¢ sont des réels non tous nuls, prouver que 1’équation az+by+cz = 0
ne peut jamais représenter une droite. Et sia=b=c¢=07

2. Que représente I'équation y = 22 dans R?? Et ’équation 22 + 42 =07

Exercice 3 Donner une base du sous-espace vectoriel de R* défini par le systéme d’équations suivant :
{ r+2y—2+3t = 0,

vyttt = 0. Faire de méme pour celui d’équation z + y — 2z 4+ 2t = 0.

Exercice 4 Soit E un K-espace vectoriel et F, G des sous-espaces vectoriels de E tels que E = F U G.
Montrer que F = E ou G = E.

Exercice 5 Soit E un K-espace vectoriel et F un sous-espace vectoriel de E, distinct de {Og} et de E.
Montrer que (E \ F) U {Og} n’est pas un sous-espace vectoriel de E.

Exercice 6 Soit G,F; et Fo des sous-espaces vectoriels d’'un méme espace vectoriel. A-t-on toujours
GN(F1+F2)=(GNFy)+(GNFq)?

Exercice 7 Dans le R-espace vectoriel E des fonctions dérivables sur R & valeurs dans IR, on pose
Zi={f €E] f(0) = f'(0) = 0} et on note Py 'ensemble des fonctions affines.

1. Montrer que Z; et Py sont des sous-espaces vectoriels de E et que E = Z; ¢ P;.

2. Si f € E, interpréter graphiquement la projection de f sur P;.

Exercice 8 Dans l'espace E = F(RR,R) on note C I’ensemble des fonctions constantes, F celui des
fonctions nulles sur R4 et F_ celui des fonctions nulles sur R—. Montrer que C,F,, F_ sont des sous-
espaces vectoriels de Eet que E=C@®F o F_.



Exercice 9 (Centrale-Supélec, 2022, extrait). Soit F un sous-espace vectoriel d'un espace vectoriel E
(pas forcément de dimension finie). Si F admet deux supplémentaires G et Ga, démontrer que Gy et
Go sont isomorphes.

Remarque. Ainsi, si F admet un supplémentaire de dimension finie p, tous ses autres supplémen-
taires sont aussi de dimension p. On dit que p est la codimension de F, on la note codim(F).

Exercice 10 (Commutant d’un endomorphisme nilpotent, CCINP). Soit E un espace vectoriel non nul
de dimension finie n, et u dans £ (E). On suppose que u est nilpotent d’indice n, c’est-a-dire u™ = 0 et
u"t £ 0.

1. Montrer qu’il existe  dans E tel que (z,u(z),u?(x),...,u" !(z)) soit une base, notée %, de E.
2. Déterminer la matrice de v dans la base %,.
3. On note I', 'ensemble des endomorphismes de E qui commutent avec u.

(a) Montrer que I';, est un sous-espace vectoriel de & (E).
(b) Montrer que I'y, = Vect(Idg, u,u?,...,u""!) et que dim I, = n.

2.2 Familles libres, génératrices
Exercice 11 Expliquer pourquoi ’ensemble R peut étre muni d’une structure de Q-espace vectoriel.
C’est cette structure qu’on utilise dans cet exercice.

1. Montrer que (1,+/2) est une famille libre. Et pour (1,v/2,v/3)?

2. On note py, po, . . . la suite strictement croissante des nombres premiers. Montrer que (In(py,))nen+
est libre. Qu’en déduire sur la dimension de R vu comme Q-espace vectoriel ?

Exercice 12 Dans l'espace F (R, R), montrer que la famille (cos, sin, ch,sh) est libre.

Exercice 13 1. Soit (Py,...,P,) une famille de polynémes non nuls de degrés tous distincts.
Montrer que cette famille est libre.

2. Dans Ry[X], montrer que (X2, X2 + X, X2 4 1) est libre, bien que constituée de polynémes de
méme de degré. Est-ce une base de Ro[X]?

3. Soit n un entier naturel. Si (P;);cr est une base de R,,[X], pourquoi existe-t-il ¢ dans I tel que
deg(P;) =n?

4. Soit a dans K. Montrer que ((X —a)")new est une base de IK[X] et donner les coordonnées d’un
polyndéme P dans cette base.

Exercice 14 (Ultra classique). Ici, I désigne un intervalle de longueur non nulle. Pour tout complexe
a on note f, : I — C la fonction définie par f,(z) = e** pour tout réel 2. Montrer que la famille (f;)qcc
est libre. Indication : utiliser la dérivation et une récurrence.

Exercice 15 (Centrale-Supélec, extrait). Pour tout réel a on note f, : R — R définie par f,(z) = |z—al
pour tout réel x. Montrer que la famille (f,)qer est libre. Indication : ot n'est pas dérivable fq ?

2.3 Applications linéaires, noyau et image

Exercice 16 Donner une base du noyau et de 'image des applications linéaires canoniquement asso-

ciées aux matrices suivantes :
1

<123> O
45 6 )

w = O
ot O =



Exercice 17 (matrice antidiagonale). Soit n dans IN* et ay,...,a, € C. Grace aux endomorphismes
associés, calculer A2 si A est la matrice suivante.

0 .
. 0

Exercice 18 Soit n dans IN* et F, G, H des sev de R" tels que dim F +dim G+dim H > 2n. Démontrer
que FNGNH # {0}. Indication : considérer f(x,y,z) — (z — z,y — 2).

Exercice 19 (E34). Soit E le R-espace vectoriel des fonctions continues de [0, 1] dans R. Pour tout
f dans E, on considére la fonction T(f) définie sur [0, 1] par

vre 0,1, T(f)x) = f: (1) dt.

1. Montrer que T est un endomorphisme de E.

2. Si f € E, justifier que T(f) est dérivable et calculer T(f)’.
3. Si f est de classe 8', que vaut T(f’)?

4. Déterminer Ker(T) et Im(T).

Exercice 20 Soit E un K-espace vectoriel de dimension finie n > 0. Soit f et g dans L (E) tels que
E = Ker(f) + Ker(g) = Im(f) + Im(g). Montrer que ces sommes sont directes.

Exercice 21 (Centrale-Supélec 2022). Soit E un espace vectoriel de dimension finie et V un sous-espace
vectoriel de Z£(E) tel que V \ {0y g} C GL(E). Démontrer que dim V < dim E.

Exercice 22 (D’aprés Arts € Meétiers). Soit n un entier au moins égal a 2. On note ¥ Papplication
définie sur Jl,(C) par (M) = M — tr(M)L,.

1. Montrer que ¥ est un automorphisme de Jl, (C).

2. Montrer que W o W est une combinaison linéaire de ¥ et de Id 4, (¢). En déduire |

€*(LR) — B> (,R)
f N f”-
Montrer que ® est un endomorphisme surjectif. Est-il pour autant injectif ?

Exercice 23 Soit I un intervalle de R de longueur non nulle et ® :

Exercice 24 Soit E un K-espace vectoriel quelconque et f dans £ (E).
1. Montrer que Ker(f) NIm(f) = {Og} si et seulement si Ker(f) = Ker(f?).
2. Montrer que Ker(f) + Im(f) = E si et seulement si Im(f) = Im(f?).
3. On suppose ici que dim(E) < co. Montrer que Ker(f) = Ker(f?) <= Im(f) = Im(f?).

Exercice 25 (matrices magiques). Une matrice carrée M est dite magique quand on obtient la méme
valeur en sommant une ligne quelconque, une colonne quelconque et une diagonale quelconque. On note
alors s(M) cette valeur commune.

1. Montrer que I’ensemble 63 des matrices magiques 3 x 3 est un sous-espace vectoriel de Jl3(IR)
et que s est une forme linéaire sur 6s.

2. Montrer que 63 = Ker(s) @ Vectg(J) ot J est la matrice ne contenant que des 1.

3. Prouver que Ker(s) = (Ker(s) N%3(RR)) ® (B3N A3(R)) et en déduire une base de 63 composée
de matrices symétriques ou antisymétriques.

Exercice 26 Soit n dans IN* et r dans [0,n]. L’ensemble des matrices de rang r est-il un sous-espace
vectoriel de J,(IK) ? Et celui des matrices de rang inférieur ou égal a r?

10



Exercice 27 (noyauz itérés, décomposition de Fitting, Centrale-Supélec). Soit E un K-espace vectoriel
quelconque, et soit f dans £(E). Pour tout entier k, on pose

N, = Ker(f¥) et I, = Im(f").

1. Montrer que (Nj)ren est une suite croissante pour l'inclusion, et que (Ix)ren est une suite
décroissante.

2. Justifier que |J Ny et [ I sont des sous-espaces vectoriels de E, stables par f : on les note
kEN kEN
respectivement N et €. On dit que N est le nilespace de f et que 6 en est le coeur.

3. Déterminer N et € lorsque f € GL(E).
4. Maintenant, E est supposé étre de dimension finie non nulle n.
(a) Justifier I'existence d’un entier k tel que Ny = Ny : on note r le plus petit d’entre eux.
Montrer alors que pour tout k& > r, N = N,..
(b) Prouver alors que pour tout k > r, I = I,.
(c) Montrer que N @ 6 = E (décomposition de Fitting).
(d) Etablir I'existence d’une base de E dans laquelle la matrice de f est (—‘%) avec A

nilpotente et B inversible.

Q| =

2.4 Matrices et applications linéaires

Exercice 28 (endomorphismes cycliques). Soit E un K-espace vectoriel de dimension finie n, non
nulle. Un endomorphisme u de E est dit cyclique s’il existe un vecteur = de E telle que la famille
(z,u(z),...,u" (z)) est une base de E. Un tel vecteur est qualifié de totalisateur pour w.

Montrer que u est un endomorphisme cyclique de E si et seulement s’il existe une base de E dans
laquelle la matrice de u est de la forme

0 ao
o 0
. :
0
O 1 ap—1]

ol ag, - .., a,—1 sont des scalaires.

Exercice 29 Soit D 'endomorphisme de dérivation de R3[X].
1. Donner sa matrice dans la base canonique (1, X, X2, X3).
2. Donner sa matrice dans la base de Hilbert (1, X, $X(X — 1), :X(X — 1)(X — 2)).

3. Si M est une matrice représentant D dans une base quelconque. Que vaut M* ?

Exercice 30 (matrices nilpotentes).

1. Soit M nilpotente. Justifier I'existence d’un unique entier r tel que M” = 0 et M"~! £ 0. Cet
entier s’appelle [’indice de nilpotence de M.

2. Puisque M1 £ 0, il existe une colonne X telle que M"~'X £ 0. Montrer alors que la famille
(X, MX,...,M""!X) est libre et en déduire que r < n.

3. Démontrer que toute matrice triangulaire supérieure dont la diagonale est nulle est nilpotente.
4. Donner un exemple de matrice 2 X 2 nilpotente mais pas triangulaire.
5. Soit M dans Jl2(IK) telle que tr(M) = det(M) = 0. Montrer que M est nilpotente.

11



6. Montrer que la somme de deux matrices nilpotentes n’est pas toujours nilpotente.

7. Soit M et N dans Jl,(K), nilpotentes. On suppose que MN = NM. Montrer que M + N est
nilpotente.

Exercice 31 (Mines-Ponts). Soit n un entier au moins égal a 2 et F un sous-espace vectoriel de J(,,(R)
contenant toutes les matrices nilpotentes. Démontrer que F contient au moins une matrices inversible.

Exercice 32 On note D I'endomorphisme de dérivation de 'espace €°°(RR,R) et on note F 'espace
Vectr (cos, sin). Montrer que F est stable par D, puis déterminer la matrice de ’endomorphisme induit
par D sur F dans la base (cos, sin).

Exercice 33 (Centrale-Supélec, extrait). Si D est une matrice diagonale, démontrer que
Ker(D) = Ker(D?).
En déduire que Im(D) = Im(D?).

Exercice 34 (matrices qui commutent).

1. Soit D une matrice diagonale dont tous les coefficients sont deux a deux distincts. Soit M une
matrice carrée commutant avec D (c’est-a~-dire MD = DM). Montrer que M est diagonale.

2. Soit M une matrice carrée commutant avec toutes les matrices carrées de méme format. Montrer
que M est proportionnelle & la matrice identité.

Exercice 35 (Ultra classique). Soit n un entier naturel non nul et A dans J(, (IK).

1. Montrer que rg(A) = 1 si et seulement si A = CL avec C une matrice colonne et L une matrice
ligne toutes deux non nulles.

2. En déduire qu'il existe un scalaire A tel que A2 = AA et préciser la valeur de A.

Exercice 36 1. Si E est un C-espace vectoriel, rappeler pourquoi on peut le voir comme un RR-
espace vectoriel. Montrer que l'application J : E — E définie par J(z) = iz est R-linéaire et
vérifie J2 = —Idg. Est-elle C-linéaire ?

2. Réciproquement, soit E un R-espace vectoriel et soit J € £(E) tel que J? = —Idg. Construire
une structure de C-espace vectoriel sur E. En déduire que dimp (E) est pair.

Exercice 37 (produit de Kronecker, Centrale-Supélec, écrits 2025). Soit n, p, q et r des entiers naturels
non nuls. Si A € UM, ,(K) et B € Ml 4(IK), on définit la matrice A ® B de Mly,qpr(IK) comme étant

CLLlB al’nB

an1B ... an,B

. 1 2 3 a b
1. CalculerA(X)B&A-(4 5 6>etB—<c d)'

Que vaut X ® Y si X et Y sont deux matrices-colonnes ? Et si ce sont des matrices diagonales ?
Si A€ Jl,(K), comparer A®1, et I,, ® A.
Montrer que ® est une application bilinéaire de My, ,(IK) x My, (K) dans Mg pr ().

Démontrer que (AA") ® (BB') = (A® A’)(B® B’) si A, A’, B, B’ sont des matrices de formats
compatibles.

o WD

&

En déduire que si P et Q sont dans GL,,(IK), alors P ® Q est inversible, et donner son inverse.

7. Application. On dit qu'une matrice est diagonalisable quand elle est carrée et semblable & une
matrice diagonale. Si A et B sont diagonalisables, démontrer que A ® B aussi.

12



Exercice 38 (le corps gauche quaternions). On pose (en ’honneur de Hamilton),

a-{(} 7):woec)

1. Montrer que H est un sous-R-espace vectoriel de Jl2(C), mais que ce n’est pas un sous-C-espace
vectoriel de JMl2(C). Donner dimpg H.

2. On pose J = (0 -1

1 0 ) Démontrer que pour toute matrice A de J2(C),

AeH <« JAJ'=A.

3. En déduire que H est stable par x, contient Is, et que tout élément non nul de H est inversible.

Dans la suite, si a € R, on notera a en lieu et place de als.

4. Montrer que I’ensemble {a +bJ : (a,b) € R?}, que I'on notera Cj, est un sous-R-espace vectoriel
de H stable par x et que c¢’est un anneau isomorphe & C (i.e. il existe une application linéaire
bijective f : C — Cj telle que Y(a,b) € C?, f(ab) = f(a)f(b) et f(1) = Io).

Remarque. L’ensemble H est donc presque un corps : la multiplication n’étant pas commuta-
tive, on dit que H est un corps gauche (skew field en anglais). Le corps gauche des quaternions
sert en infographie pour transcrire efficacement des rotations dans l’espace exactement comme
les nombres complexes transcrivent les rotations du plan. La question 4 permet de voir H comme
une extension de C. La liste des ensembles de nombres s’agrandit donc :

NczZcDcQcRcCcCH.

Notons que Z. et D sont des anneaux mais pas des corps, et que IN n’est pas un anneau.

13



Des séries numeériques

Connaitre le vocabulaire de base : série, sommes
partielles, sommes, reste, divergence grossiére, etc.
Maitriser les suites/séries géométriques : condition
de convergence, valeur des sommes partielles et de
leur limite.
Maitriser les séries de Riemann, en particulier la
célebre série harmonique > % qui diverge.
Utiliser des équivalents pour trouver la nature (CV
ou DV) de séries a termes positifs (STP).
Savoir mettre en place une comparaison série-
intégrale pour non seulement trouver la nature
de séries, mais aussi pour trouver des équivalents
simples des sommes partielles (si DV) ou des restes
(si CV).
Savoir utiliser la comparaison aux séries de Rie-
mann, aussi appelée « régle du xn® » : si > up
est une série complexe telle que (n%uy) est bornée
(par exemple si elle tend vers 0) et que o > 1, alors
> un CVA.
Avoir compris ce qu’est une série absolument
convergente, et qu’il n’est pas évident qu’une telle
série converge (c’est un théoréme!).
Avoir compris que le produit de Cauchy de deux sé-
ries > an et > b, est une troisiéme série Y c,, ou
n
¢n = Y, arpbn_k. Connaitre une condition suffisante
k=0
pour que Y ¢, converge, et connaitre sa somme.
Maitriser le théoréme spécial des séries alternées, et
ne pas se contenter du résultat de convergence : les
précisions sur le reste Rn sont trés utiles en pra-
tique.
Savoir utiliser la régle de D’Alembert & bon escient.
Connaitre la formule de Stirling donnant un équi-
valent de n! (prononcer « factorielle n »).

3.1 Exercices de base

Confondre > an et Y an.

n=0

n

azk.

2n
Confondre 3 a et
k=0 k=0

Se tromper sur l’expression du reste Rn. C’est

o=} o=}
> etnon ).
k=N+1 k=N

Croire que le fait que u, — 0 entraine la conver-
gence de > u, : la série harmonique est le contre-
exemple incontournable.

(e}
Séparer des sommes infinies en deux Y (an+bn) =
n=0

> an + Y. by : cest faux en général.

n=0 n=0

1—gntl

n
Oublier g # 1 avant d’écrire > "

17
k=0 5

oo
Oublier |q| < 1 avant d’écrire kX—:O = flq.
Utiliser les équivalents sur des séries qui ne sont pas
A termes positifs : on peut tout & fait avoir un, ~ v

avec »_ u, convergente et > v, divergente.

Penser que la convergence de )" an et Y b, suffit
faire converger leur produit de Cauchy > ¢, : c’est
faux (cf. exercices).

Oublier de vérifier que a,, > 0 & partir d’un certain
rang avant d’appliquer la régle de D’Alembert.

Appliquer la régle de D’Alembert a une série géo-
métrique : c’est un cercle vicieux, car on démontre
cette régle grace aux séries géométriques !

Ne pas connaitre ses équivalents usuels : In(1 + ),
e® — 1, cos(z) — 1 et Cie. Fatal!

Exercice 1 (une preuve sans mots). Observer le dessin suivant.

il il
8 1 i I
1 6 | 16| 18
1 L
1 1 16
4 4 .
16
it
1 8
4 1
8

14

Quelle série représente ce dessin? Que semble valoir sa somme ? Démontrer cette conjecture.



o
Exercice 2 Proposer une « preuve sans mots » de I’égalité 3% = %

n=1

Exercice 3 (le flocon de von Koch). Fqy est un triangle équilatéral de coté 1. Pour chaque entier n, on
construit par récurrence une ligne brisée F, de la facon suivante :

AV

1. Montrer que la longueur de %, tend vers +oc.

2. Montrer que 'aire contenue dans F,, tend vers une limite finie.

Exercice 4 Donner la nature des séries proposées.
n + 2025 [ < 1>"} 2-4-...-(2n) 1 n!
—(1+— , _— —, — (€ R),
S Sl ()] o e Ly M een

n \" cos(n 1 i 5 ind(x
> <n+1> 3 n(Q ), Y In (cosg), 3 In(n) ), ZJO 1+(x)dx’
Z c(f(g;))’ Z(W— Vn), Z(l —el/m), Z " Z n*In(n) (2 € R).

en . nl’ n!

Exercice 5 Grace a un développement limité a un ordre suffisant, établir la convergence de ) _ sin ( (_le)n ) .
Expliquer pourquoi un simple équivalent ne peut justifier ce résultat.

Exercice 6 (CCINP). Etudier, grace au lien suite-série, la nature de la suite (v, )nens, ol

1
VneN*, v, =2V/n-Y —.
= vk

n
. = . # ~ 1 1
Exercice 7 Etablir que kZ=:2 FIn(R) Yo n(In(n)).
. S 2 , . e 1 &, (—1)nt!
Exercice 8 On admet que = = I Déterminer les valeurs de vy et e
. n 6 = (2n+1) = n

125 n
Exercice 9 (CCINP). Montrer que % est un réel négatif.
n=0 )

Exercice 10 (autour du produit de Cauchy).
1. Expliquer pourquoi la série ) % est convergente. Montrer que le produit de Cauchy de cette
série par elle-méme est une série divergente.
2. Soit g et r distincts dans C* tels que |¢| < 1 et |r| < 1. Expliciter le produit de Cauchy de > ¢"
par " . Etsiqg=1r7

n+
2n

o
3. Grace a un produit de Cauchy, déterminer
n=0

Exercice 11 (régle de Cauchy). Soit > u, une série a termes positifs.
1. Si (/un)nen+ posséde une limite ¢ < 1, montrer que »_ u,, converge.
2. Si ({/un)nen+ posséde une limite ¢ > 1, montrer que »_ u, diverge.

3. Montrer que si £ = 1 on ne peut rien dire.
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3.2 Les grands classiques

Exercice 12 (Mines-Ponts).

1. Convergence et somme de ) %? Indication : (1,X,X(X —1),X(X — 1)(X — 2)) est une base de
R3[X].

2. Plus généralement, pour tout entier p, montrer que la somme de ) %’,J est un multiple de e.

Exercice 13 (la constante d’Euler). On pose H,, =1 + % +...+ % pour chaque n dans IN*.

1. Grace au lien suite-série, prouver que H,, — In(n) tend vers une limite finie, notée v. A ce jour,
on ne sait toujours pas si Yy € Q ou non. On a donc montré que H,, =1In(n) + vy + o(1).

2. En encadrant z — % un peu mieux que par des rectangles, prouver que % < v < 1. On montre
plus précisément que y ~ 0.577 & 1073 pres.
2n

3. Déduire de 1 la limite de ) % quand n — +00.
k=n+1

4. (CCINP) Discuter selon les valeurs de a > 0 la nature de Y atl".

Exercice 14 (précision sur les séries de Riemann). Soit o un réel.

n

. 1—o
1. Sia€]0,1[, montrer que Y 7 ~ 2—.
k=1
oo
2. Sio > 1, montrer que Y. & ~ ﬁno}—l'
k=n+1

Exercice 15 (précision sur la série harmonique).

1. Soit Y ay et > b, deux séries a termes positifs. On suppose que a,, ~ b, et que > a,, converge.
Montrer que les restes de ces deux séries sont équivalents.

1 1
2. Application : montrer que |H,, = In(n) + v + o +o ()
n n

Indication : on se servira de ’exercice précédent, aprés avoir posé u, = H,—In(n)—y et vy, = up —tp_1.

Exercice 16 (série harmonique alternée).

L. -1 k+1 .
1. Montrer que la série ) % converge, mais pas absolument.

1
2. Méthode 1. En remarquant que %ﬂ = z* dz, déterminer la somme de la série étudiée.
0

3. Méthode 2. Ecrire I'inégalité de Taylor-Lagrange appliquée a f : z + In(1+x) en 0, et retrouver
la somme de la série étudiée.

N )k+1
4. Méthode 3. Pour chaque n dans IN*, on pose S, = >_ (% Montrer que So, = Hs,, — H,y, €t
k=1
retrouver encore une fois la somme de cette série.

Exercice 17 (séries de Bertrand). On appelle série de Bertrand, toute série de la forme ) m,

ol a et B sont deux réels.

1. Montrer que si o < 0, la série est grossiérement divergente.

k 1

X mwy +00. En déduire que la série

2. On suppose o € [0, 1[. Trouver k dans |0, 1] tel que n

de Bertrand diverge.
3. Si o > 1, monter que la série de Bertrand converge (imiter la question précédente).

4. Si o =1, conclure grace & une comparaison série-intégrale.
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Exercice 18 (régle de Raabe-Duhamel). On cherche a améliorer la régle de D’Alembert dans le cas
douteux, c’est-a-dire dans le cas ou aZ—:l — 1. Soit Y a, une série & termes strictement positifs telle

que
1
an+1 :1a+0<>’
Qnp, n n

N P . a
ol o est un réel. On notera que l'on a bien =2+ — 1.
n

1. On suppose que o > 1 et on considére un réel B de ]1,o[. On pose alors v, = n—lﬁ pour tout n
dans IN*.

(a) Démontrer que “2+L < U"“ a partir d’un certain rang.
(b) En déduire que Z an converge.
2. Si o < 1, montrer que ) a, diverge.

3. Application : donner la nature de la série > < [T Vksin (\1[))
k=1 k

4. En s’aidant des séries de Bertrand (exercice précédent), montrer que tout peut arriver quand
o =1 (cas douteux de la régle de Raabe-Duhamel).

Exercice 19 (transformation d’Abel). Soit (an)nen €t (un)nen deux suites numériques.
n

On pose, pour tout entier n, U, = > uy la somme partielle associée & (uy)nen.
k=0

1. Montrer que ’on peut écrire, pour tout entier non nul n,

n

n
§ arpug = [an Uy — aoUp] — E ar, — ag—1)Ug_1.

k=1 k=1

On notera ’analogie avec une intégration par parties. On suppose maintenant que
o (ap)nen est une suite de réels positifs, décroissante, tendant vers 0,
® > u, est une série de complexes bornée.

2. Montrer que ) ayu,, est une série convergente. Retrouver le théoréme spécial des séries alternées.

et 37 <M gont convergentes (ot 9% 0 [21)).

nln(n)

int

3. Montrer que les séries ) —

3.3 Exercices plus techniques

Exercice 20 (Centrale-Supélec). Etudier la nature de la série > u,, oil, pour tout entier non nul n,
1/n si n est un carré,
Up =
(=1)"/n  sinon.

Indication : considérer une série convergente » vy telle que Y (u, + vy) soit une STP intéressante.

(—1)"
4n+1)

Exercice 21 (Ecole Polytechnique). Nature et calcul de Z 4n

L. EULER A. L. CaucHy N. ABEL J. BERTRAND B. RIEMANN H. von KocH
(1707-1783) (1789-1857) (1802-1829) (1822-1900) (1826-1846) (1870-1924)
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Calcul différentiel sur R"

V' Avoir compris que le Calcul différentiel se fait rai- Si f est une fonction définie « par morceaux » par
sonnablement sur des ouverts. flzyy) = 5 siy # 0, et f(z,0) = 0, une erreur

v Savoir calculer des dérivées partielles, y compris fréquente, lorsque 'on veut calculer %(O, 0) est de
dans les cas ou la fonction est définie « par mor- calculer %(O,y) pour y # 0 et de passer a la li-
ceaux » (dans ce cas, on revient au taux d’accrois- mite y — 0. Vous sous-entendez alors que f est de
sement). classe B!, ce qui peut ne pas étre le cas! La seule

v' Savoir expliquer ce qu’est la différentielle d’une méthode : repasser par des taux d’accroissement.
fonction (de classe ') en un point. Confondre df, df(a) et df(a) - h (certes, les phy-

v Connaitre le lien fondamental qui unie df(a) et siciens notent ces trois objets de la méme fagon :
Vf(a). df).

V' Savoir donner le développement limité a 1’ordre 1 Croire que (z,y) — f(z,y) est continue c’est dire
ou 2 d’une fonction en un point. Savoir I’exprimer que f est continue par rapport & z et par rapport
grace a la différentielle, les dérivées partielles ou le ay.
gradient de la fonction. Croire que l'existence des dérivées partielles de f

v/ Savoir interpréter géométriquement le gradient entraine la continuité de f.
grace aux lignes de niveau. Ne pas se placer sur un ouvert pour utiliser la condi-

v/ Savoir donner une équation de la droite tangente a tion du 1°" ordre lors de la recherche des extrémums
une courbe implicite réguliére ou du plan tangent a locaux.
une surface implicite réguliere. Croire que la condition du 1°" ordre (Vf(a) = 0)

v Savoir énoncer les conditions d’ordre 1 pour recher- est suffisante pour avoir un extremum.
cher les extrémums d’une fonction. Oublier ’hypothése (suffisante) « de classe €2 »

v' Savoir résoudre des EDP par changement de va- avant d’appliquer le théoréme de Schwarz, ou croire

riables.

4.1 Exercices de base

Exercice 1 (dérivée d’une

un paramétrage est { y(t)

z(t) r cos(wt),
rsin(wt),

pt.

z(t)

que ce théoréme est une évidence.

composée). Un point mobile ¢ — M(t) décrit la courbe € de l'espace dont

1. Interpréter graphiquement les parameétres w,r et p et esquisser un tracé de 6.

2. On suppose 6 plongée dans un champ électrique dérivant d’un potentiel électrique V. Exprimer

Exercice 2

2.

%V(M(t)) en fonction des dérivées partielles de V.

1. Soit f: (z,y) — xfiny complétée par f(0,0) = 0. Montrer que f est continue par

rapport & x et par rapport & y mais n’est pas continue en (0, 0).

La fonction f : (z,y) — 20 esteelle prolongeable par continuité en (0,0) ?

x2 +y2

Exercice 3 (une fonction désagréable). On définit f : R? — R par f(z,y) = % siz#0et f(0,y) =y.

1. Montrer que f admet des dérivées partielles en (0, 0).

2. Montrer mieux : quel que soit le vecteur h de R2, la fonction t +— f(th) est dérivable en 0.

3. Prouver cependant que f n’est pas continue en (0, 0).

Exercice 4 (I’ezemple de Peano). On définit f : R? — R par f(z,y) = T Y2

22 — 2

st (z,y) # (0,0)

0 st (z,y) = (0,0).
2 2
Montrer que les dérivées partielles ;Tgy(o, 0) et %(O, 0) existent mais ne sont pas égales. Qu’en dé-
duire sur f7?
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Exercice 5 (différentielle d’une norme euclidienne). On note N la fonction qui & tout (x1,...,x,) de

R™ associe \/x? + ...+ z2.

1. Si a # Orn, montrer que N est de classe €' en a et déterminer dN(a) par deux méthodes : 1)

avec les dérivées partielles, 2) avec une approximation affine.

2. Montrer que N n’est pas de classe @' au voisinage de Ogn.

Exercice 6 (extrémum local). Soit f : R? — R définie sur R? par f(x,y) = 23 + 3zy? — 15z — 12y.

1. Trouver les points critiques de f.
2. Parmi eux on trouvera a = (1,2). Montrer que a n’est pas un extremum local de f grace a un
développement limité a 'ordre 2.

‘?‘M‘ NN
T
N

N

i
\"'w;“l 4’!4’""” k‘\\

%
50
o
3
6

FIGURE 1 - Différents points de vue de & : z = 2% + 3zy? — 152 — 12y.

Exercice 7 Soit f : (z,y) — y? — 2%y + 22 définie sur D = {(z,y) € R? |22 — 1 <y < 2% + 1}.
1. Déterminer les points critiques de f sur D =D\ D.

2. Déterminer les extrema de f sur dD puis sur D.

4.2 Les grands classiques
Exercice 8 (différentielle du déterminant). On identifie Mly(R) avec R?, en identifiant la matrice
((CI (ID avec le 4-uplet (a, b, c,d).

1. Calculer les dérivées partielles premiéres de det : Mlo(R) — R.

2. En déduire la différentielle de det en I est tr.

3. (%) Si n € IN*, on identifie de méme Jl, (R) avec R™*. Démontrer que grad detyy = Com(M) (la
comatrice de M a pour terme de place (4,7) : (—1)*7A; ;(M)). En déduire que d(det)(I,) = tr.

Exercice 9 (fonctions homogenes et théoréme d’Euler). On considére un ouvert D C R"™ tel que pour
tout z € D, Vit > 0, tx € D. Si a € R, on dit qu'une fonction f : D — R est homogéne de degré o quand

Ve eD, YVt >0, f(tx)=1t*f(z).
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L. Montrer que f : (z,y) — 2In(7) est homogene et donner son degré.

2. On suppose que f est de classe €. Montrer que si f est homogéne de degré o alors la relation
d’FEuler est vérifiée :

Vz € D, kaaxk = af(x).

. s
Ecrire cette relation en fonction du gradient gradf de f.
3. Réciproquement ? On fixe z dans D et on pose ¢(t) = f(tx) pour tout ¢ > 0.

(a) Calculer ¢/(t) pour tout ¢ > 0.
(b) On suppose que la relation d’Euler est vérifiée : en ’écrivant en tx pour tout t > 0 et z € D,
donner une équation différentielle portant sur ¢ et conclure.

Exercice 10 (une EDP 1). On cherche a résoudre 2%(3:, y) — af ,(€,y) = x ou f est une fonction
inconnue de classe 6! sur R2.

1. Effectuer le changement de variables affine ®(z,y) = (X,Y) avec X = ax + by, Y = cx + dy (ou
ad — bc # 0) et réécrire PEDP dans le nouveau systéme de coordonnées (X,Y).

2. Trouver des coefficients adaptés pour que cette nouvelle EDP soit simple & résoudre, et en
déduire les solutions du probléme initial.

Exercice 11 Un ouvert U de R" est dit connexe par arcs quand tous points de U peuvent étre reliés
par un arcs de classe 6! tracé dans U : V(a,b) € U2, Jy € €1([0,1],U), (y(0) =aAy(1) = b).

Soit f: U — R de classe €! telle que 3 8f e = aif =0 sur U.
1. Si U est un ouvert connexe par arcs, demontrer que f est constante sur U.

2. Soit U = R?\ D ot D est la droite d’équation y = 0. Montrer que U est un ouvert de R? et

proposer une fonction f: U — R de classe €', non constante, telle que ‘g£ = % = 0.

3. Soit U = R?\D, ou D est la demi-droite R (1, 0). Expliquer pourquoi U est un ouvert connexe

par arcs (un dessin suffira). Soit alors f : U — R définie par f(x,y) = ‘ e e V7 giz >0 et

f(x,y) = 0 sinon. Montrer que f est de classe 6!, que gf = 0 mais que pourtant f dépend de
sa 2¢ variable !

Exercice 12 Soit ?(x, y, z) = (y? cos(z), 2y sin(x) + 27, 2ye??).
1. Montrer que ? est un champ de gradients.
2. Déterminer le potentiel V dont dérive F sachant que V(0,0,0) = 1.

4.3 Equipotentielles

Exercice 13 Montrer que les surfaces & : xy + yz — 4zx = 0 et S5 : 322 — 52 +y = 0 se coupent &
angle droit au point (1,2,1).

2
Exercice 14 Soit a,b,c > 0. On considére l'ellipsoide € d’équation i—; + %—2 + i—; =1.
1. Montrer que 6 est une surface réguliére et déterminer une équation du plan tangent en tout
point.

—
2. Si a =b = c (€ est une sphére), retrouver le fait que OA est un vecteur normal & Tx €.

Exercice 15 Soit 6 la courbe d’équation e® +e¥ + z 4+ y = 2.
1. Vérifier que a = (0,0) est un point régulier de 6.
2. On admet qu’il existe une fonction ¢ de classe ‘€ telle que € soit, au voisinage de a, la courbe
d’équation y = ¢(z). Déterminer ¢(0).
3. Trouver le développement limité & 'ordre 2 en 0 de ¢ et en déduire ’allure de la courbe € au
voisinage de a.
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4.4 Les exercices plus techniques

Exercice 16 (Arts & Métiers). Soit ¢ : R — R une fonction de classe 62 et soit f la fonction définie
sur R* x R par
_ 9)
. o*f 0 . e
1. Calculer le laplacien Af = —5 + ——5 en fonction des dérivées de ¢.
ox?  Oy?
2. Quelles sont les fonctions ¢ pour lesquelles f est harmonique c’est-a-dire telle que Af = 07
Calculer alors f.

R? — R

(1) — T 422 3 Déterminer les extrema de
Y €T ) — 9.

Exercice 17 (Arts & Meétiers). Soit f :
fsur D= {(z,y) € R?| 2% + y* < 16}.

Exercice 18 (laplacien en polaires). Soit f de classe 62 sur R?. On définit la fonction f* qui « repré-
sente f en coordonnées polaires » c’est-a-dire définie par

f(r,0) = f(rcos@,rsin0).

1. Exprimer les dérivées partielles 175 et 29 de f* en fonction de celles de f.

2. En déduire le laplacien de f en fonction des dérivées partielles de f* (les physiciens disent « le
laplacien en polaires »).

Exercice 19 (une EDP 2). Déterminer toutes les fonctions f de classe 6! sur l'ouvert R?\ (R_ x R)

telles que
of of  r5—5
m@y Yor — V?® v

Montrer qu’il n’existe pas de solution de classe €' sur R? tout entier.

Exercice 20 (une EDP 3). () Déterminer les fonctions f de classe €2 sur R?, a valeurs dans R, telles
daue 2 2 2

N R

Ox? Oxdy oy?
Pour ce faire, on déterminera un réel o pour que 'application (z,y) — (z+y, oz —y) soit un changement
de variables convenable pour la résolution de cette EDP.

Exercice 21 (une EDP 4 — équation de la chaleur en 1D). (x) On maintient les extrémités d’une barre
de métal de longueur L a la température 0, et on note T(x,t) la température a abscisse = et a I'instant
t sur cette barre. J. Fourier a établi en 1807 que

9°T  oT

02~ ot
ou ¢ > 0 est une constante liée au métal constituant la barre. On suppose que T est une fonction de
classe 62 : par hypothése, la fonction f : x +— T(x,0) — qui modélise la température de la barre a
'instant t = 0 — est donc de classe 62 sur [0, L] et vérifie f(0) = f(L) = 0. On suppose de plus qu’elle

n’est pas identiquement nulle.
On s’intéresse aux solutions de la forme T : (z,y) — g(x)h(t) ot g : [0,L] - R et h: Ry — R sont
de classe 62 (fonction & variables séparées).
1. Justifier que h(0) # 0 et montrer I'existence d’un réel z( tel que g(zg) # 0.
2. En déduire que h est solution d'une EDL1 que 'on résoudra.
3. Expliquer pourquoi il existe un réel positif ¢y tel que (h(to), h'(tg)) # (0,0) et en déduire que g
est solution d’une EDL2 de la forme ¢” = kg, ou k est une constante réelle non nulle.

4. Démontrer qu’il est impossible d’avoir k& > 0.

5. Conclure : la fonction T est nécessairement de la forme (z,t) + bsin(nn{)exp (—” 5 ) ol
neN*et be R"
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4.5 (x) Intégrales multiples

Exercice 22 Aprés avoir représenté D, calculer f f(x,y) dedy dans les cas suivants :

L f(z,y) =2° +y° et D={(z,y) € R+* |z +y <1}
2. f(z,y)=e"etD={(r,y) eR2|0<x<let 0<y <2}
3. flz,y) = et et D = {(z,y) € R? | 22 + 32 < R?} (avec R > 0).

Exercice 23 Aprés avoir représenté D, calculer jf f(z,y, z) dedydz dans les cas suivants :

2. f(x,y,z):zetD:{(x,y,z)GIR?’\:/U + y? \1et0\z<h} (avec h > 0).
3 f(x,y,z):metD:{(x,y,z)€R3|a2<x2+y2+22<b2}oﬂoc€]RetO<a<b.

R

Exercice 24 (intégrale de Gauss). On pose, pour R > 0, Ig = J e~ dx. Ecrire (Ir)? comme une
0
intégrale double sur le pavé [0, R]2. En encadrant ce pavé entre deux quarts de disque, déterminer la
“+o00
célébre valeur de J e dx (définie comme étant la limite de Iz quand R — +00).
0

Exercice 25 Soit € 'ellipse d’équation 2—2 + ‘Z—j =1 (ou a,b > 0). Faire un dessin. Montrer que la

surface que € délimite est nab.
2
Déterminer de méme le volume contenu dans ’ellipsoide d’équation z—; + % + i—; =1 (oua,b,c>0).

Exercice 26 On pose D = {(z,y) € R? |2 >0, y > 0, v +y < 1}. Calculer Jf (z + (7;)26“":2_92 dzdy
D
en faisant le changement de variable u =z +yetv=z —y.

Exercice 27 Calculer le centre de gravité d’un demi-disque D de rayon R, c’est-a-dire le point G de
D tel que ﬂMeD GM dM = 0. Une autre fagcon sera vue en SI s’appuyant sur un théoréme de Guldin.

Exercice 28 Retrouver l'aire d’une sphére de rayon R grace & une intégrale surfacique.
Exercice 29 Pour tout n dans IN*, on note B, (R) la boule {(z1,...,z,) € R" | 22 + ... + 22 < R?}
de centre 0, de rayon R, et V,,(R) son volume, c’est-a-dire

ZJJJ dxldl‘g...dl‘n
n(R)
1. Etablir que V,(R) = V,,(1)R".

2. Calculer Vi(1), Va(1) et V3(1) et retrouver les volumes appris dés le collége.

3. Montrer que pour tout n dans IN*, V,,4a(1 fj (1—2%—y )2 dzdy.

Ba(1
4. Gréace a un changement de variables polaires, montrer que ffBz (1) —2?—y )2 dzdy = +2.
5. En déduire les volumes de B4(1), B5(1), Bg(1), puis celle de B (R) pour tout k.

k
6. On calcule de méme Voi (1) = % pour tout k. Grace a un programme en Python, déter-

miner la valeur de n telle que V(1) soit maximal.

7. Lorsque n — oo, prouver que la boule B, (1) occupe une place négligeable dans son cube cir-
conscrit [—1,1]™.
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De I’Algébre linéaire (partie 2)

Savoir expliquer pourquoi toute matrice M ad-

met un polyndéme annulateur a l'aide de la famille
2

(T, M, M?,... . M™).

Avoir compris le lien entre sous-espace stable et ma-
trice par blocs.

Connaitre toutes les caractérisations possibles des
hyperplans.

Etant donné un hyperplan de R™ décrit par une
équation, savoir en exhiber une base.

Savoir donner une base d’une intersection de p hy-
perplans : résoudre un systéme linéaire.

Avoir compris que les transvections (L; < L; + oL;
avec i # j) laissaient invariant le déterminant.

Savoir calculer un déterminant en le développant
suivant une rangée aprés avoir fait des opérations
élémentaires L; «— L; +al; (i # j).

Connaitre le déterminant de Vandermonde et son
implication dans la théorie de 'interpolation de La-
grange.

Oublier de dire « non nulle » pour les formes li-
néaires dont le noyau est un hyperplan.

Ne pas avoir compris qu'un polynéme en M est une
matrice, et qu'un polynéme en u est un endomor-
phisme.

Oublier de remplacer le « 1 » par I,, ou Idg quand
on explicite P(M) ou P(u) : il ne faut pas écrire
« M+ 1 » si M est une matrice!

Ecrire P(u(x)) ou P(x), qui n’ont aucun sens, au
lieu de P(u)(x).

Ne pas savoir immédiatement ce que valent (PQ)(u)
et (PQ)(M) (avec les notations du cours).

Croire que IKK[M] est de dimension infinie parce que
c’est le cas de K[X].

Parler « du » supplémentaire d’un hyperplan.
Parler de « I’ » équation d’'un hyperplan.

Croire que l'équation y = ax désigne une droite
dans R3; elle représente un plan.
Croire que det(AA) = A det(A) ou que det(A+B) =
det(A) + det(B) : Ce n’est vrai qu’en dimension 1.
Développer un déterminant avant d’avoir fait des
opérations sur les lignes et les colonnes : il faut faire
apparaitre des 0 le plus possible!

H dans

1<i<j<n

Ne pas vraiment maitriser le symbole

la formule de Vandermonde.

5.1 Polyndmes de matrices, d’endomorphismes

Exercice 1 Donner un polynéme annulateur (non nul) pour une projection, une symétrie, une homo-
thétie et pour 'application nulle.

Exercice 2

1. Rappeler 'argument qui permet de prouver qu’en dimension finie, tout endomor-
phisme admet un polynéme annulateur non nul.

. Montrer que la dérivation de IK[X] n’admet pas de polynéme annulateur non nul.

3. Montrer que si M € Jl2(K), un polynéme annulateur de M est X2 — tr(M)X + det(M).

4. En déduire une expression de M—! quand M € GLy(K).

Exercice 3 (polynome minimal). Soit n dans IN* et M dans Jl,, ().

1.
2.

Rappeler pourquoi M posséde un polynéme annulateur non nul.

Montrer qu’il existe un unique polynoéme, noté my, unitaire, annulateur de M et de degré le plus

petit possible.

3. Justifier que degmy < n? (on verra que degmy < n au chapitre 7).

4. Grace & une division euclidienne, démontrer que tout polynéme annulateur de M est un multiple

de my.

. Démontrer que dim K[M] = deg my;.
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5.2 Déterminants

Exercice 4 Montrer qu’il n’existe aucune matrice antisymétrique inversible de taille 2025.

Exercice 5 Soit m un réel. Calculer en factorisant le plus possible. Généraliser.

— == 3
e
S e

1

1
m

1

Exercice 6 Soit A une matrice réelle 3 x 3 dont X? —4X+3 est un polynéme annulateur. En supposant
que det(A) > 0, calculer det(A — 2I3).

Exercice 7 (Déterminant tridiagonal). Pour tout entier naturel non nul n, on pose A, =

1. Trouver une relation de récurrence d’ordre 2 vérifiée par la suite (Ay,)pen-

2. En déduire une expression simple de A,, en fonction de n.

Exercice 8 Grace a un déterminant de Vandermonde, retrouver le fait que la famille (f,)q.ec est libre,
ol, pour tout complexe a, f, : x — e*® est définie sur un intervalle I de longueur non nulle.

. . . : cC — C .
Exercice 9 Soit a dans C. On considére I'endomorphisme y, : . 0. OO0 C est vu comme
)

R-espace vectoriel. Déterminer det(u,) et tr(y,). Et si C est vu comme un C-espace vectoriel 7

X — AX. Doter
miner sa trace et son déterminant. Généraliser quand A € M, (K), ot n € IN*.

Exercice 10 Soit A dans Jl3(IK). On considére 'endomorphisme Ly :

Exercice 11 Soit n dans IN*. Calculer la trace et le déterminant de ’endomorphisme (K)

=5

— M,
— MT.
Indication : que peut-on dire de &, (K) et o, (K)?

Exercice 12 Soit a,b et ¢ des réels tels que b # ¢. On souhaite calculer le déterminant n x n suivant :

a C

b .
1. Montrer que D(a + X, b+ X, ¢+ X) est un polynome affine.

2. En déduire la valeur de D(a, b, c).

3. Etudier le cas ot b = ¢ par un astucieux passage a la limite.

D(a,b,c) =

13 923 ... 53
23 33 ... g3
Exercice 13 (un déterminant sans calcul). Trouver la valeur de i i

Indication : que peut-on dire d’une famille de 5 polynomes de R3[X] ?

Exercice 14 Soit n et p dans IN* tels que p < n. Si A € My, ,(K) et B € M, (K), démontrer que
det(AB) = 0. Indication : on pourra se servir du théoréme du rang.
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Exercice 15 Soit n dans IN*. Démontrer que det (23) Leie,, = 120 onl

1<i<n

Exercice 16 (Centrale 2024). Soit n dans IN*, et soit A et B dans J(,(R). On suppose que A et B
sont semblables dans J,,(C), c’est-a-dire IP € GL,(C), A = PBP~!. Montrer qu’en fait A et B sont
semblables dans J(,(R).

Indication. On écrira P = Q + iR avec Q, R réelles et on expliquera pourquoi la fonction polynéme
x +— det(Q + zR) n'est pas identiquement nulle sur R.

Exercice 17 Soit n un entier au moins égal & 2. Trouver les matrices A de M, () telles que
VX € U, (K), det(A+ X)=det(A)+ det(X).

Indication : montrer qu’une telle matrice A n’est pas inversible. Ensuite, imaginer un instant qu’une
colonne de A soit non nulle, et créer une matrice inversible X astucieusement.

Exercice 18 (comatrice). Soit n dans IN*. Si A € M, (K) et (i,5) € [1,n]?, on note A;;(A) le dé-
terminant de la matrice obtenue en enlevant la ligne i et la colonne j de A. On note alors Com(A) la
matrice carrée de taille n dont le terme de place (i, j) est (—1)"7A,; ;(A).

1. Calculer Com(A) si A = <Z Z)

2. Démontrer que A x Com(A)T = det(A)L,. En déduire A~! si A € GLy(Z).

3. Application. On note GL,(Z) I'ensemble des matrices A de M, (Z) telles que A~ € M, (Z).
(a) Proposer une matrice A dans Jl2(Z) telle que det(A) # 0 mais qui n’est pas dans GLa(Z).
(b) Démontrer que GL,,(Z) = {A € M, (Z) | det(A) € {-1, 1}}

Exercice 19 Soit n et aq,...,a, des réels. Calculer
a/l al DY a/l
a/l a2 PEY a2
aq a9 [P an

Que dire si ap = k pour tout k7

Exercice 20 Soit n et p des entiers naturels, n étant non nul. Calculer le déterminant de la matrice
(("ﬁ;l)) r<icpi1 - Indication : on opérera L; < Lj — Li_1 pour i > 1.

1<5<pH
Exercice 21 Soit X un ensemble non vide, n un entier naturel non nul et (fi,..., f,) une famille libre

dans F (X, K). Montrer qu’il existe n éléments z1,...,z, de X tels que la matrice (fl(x])) \ic,, SOIt
1<j<n
inversible.

Indication : on le montrera par récurrence sur n en développant un déterminant par rapport a sa
derniere colonne.
5.3 Formes linéaires et hyperplans

Exercice 22 1. Soit n dans IN*. Montrer que I’ensemble des matrices de trace nulle est un hyperplan
de Jl,,(R)?
2. Pourquoi I’ensemble des polynémes qui sont des multiples de X est-il est un hyperplan de K[X] ?

Exercice 23 Soit H un hyperplan d’'un K-espace vectoriel E. Montrer que tout vecteur de E qui n’est
pas dans H engendre un supplémentaire de H.
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Exercice 24 Soit E un K-espace vectoriel de dimension n, supposée non nulle. Montrer que tout
sous-espace vectoriel de dimension p € [0,n — 1] est I'intersection de n — p hyperplans.
Exemple. Dans R*, décrire la droite Ru, ott u = (1,2, 3, 4), comme une intersection de 3 hyperplans.

Exercice 25 (utilisation du théoréeme du rang). Soit E un K-espace vectoriel de dimension n, supposée
non nulle.

P
1. Soit Hy,...,H, des hyperplans de E. Montrer que dim (| Hy > n —p.
k=1
P
2. Soit (¢y,...,¢,) une famille libre de E*. Montrer que dim (] Ker(¢,) =n —p.
k=1

Exercice 26 (Détermination du dual de M, (R)). Soit n dans IN*.
1. Si A € M, (R), vérifier que @5 : M +— tr(AM) est une forme linéaire sur 4, (R).

2. Réciproquement, montrer que toute forme linéaire sur Jl,(RR) est de cette forme.
Exercice 27 Soit ¢ une forme linéaire sur J(,,(R) qui vérifie la propriété fondamentale de la trace :
V(A,B) € M, (R)?, o(AB) = ¢(BA).
Montrer que ¢ est proportionnelle & la trace. Indication : utiliser les matrices E; ; et l’exercice précédent.

Exercice 28 (Dualité). On rappelle que 'on note E* au lieu de £ (E, K) si E est un IK-espace vectoriel.
Si (g, x) € E* x E, le scalaire ¢(z) se note souvent (¢, x).

1. Si E est de dimension n, on considére 9B = (e, ..., e,) une base de E. Pour chaque 4, on note e}
la forme linéaire qui a chaque x € E associe sa composante sur e;. Que vaut (e}, e;) pour tous ¢

*

et j 7 En déduire que B* = (€], ..., e}) est une base de E*, appelée base duale de %.

’r n

2. Déterminer B* quand A est la base canonique de R,,[X]. Indication : penser a Taylor!

3. On suppose ici que E n’est pas de dimension finie, et qu’il posséde une base B = (e;);cr.
Montrer que 9%B* est toujours libre, mais pas génératrice de E*.

y .
"i

A-Th. VANDERMONDE P. S. de LapLace A. L. Cavcuny W. R. HAMILTON A. CAYLEY
(1735-1796) (1749-1827) (1789-1857) (1805-1865) (1821-1895)
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Des espaces vectoriels normés

v Savoir ce qu’est une norme dans le cas général, et Oublier les modules dans les normes usuelles sur les
connaitre les normes des espaces usuels. C-espaces vectoriels.
. , . ) .
v/ Savoir montrer qu’une partie est convexe, bornée. Croire que toutes les boules sont rondes : ce n’est
v Savoir montrer que deux normes sont équivalentes, vrai que pour la norme || - |2 (aussi appelée norme
ou & défaut, savoir utiliser une suite pour montrer euclidienne).
)
qu’elles ne le sont pas. Ne pas avoir compris que le caractére borné dépend
v Connatitre la définition de la convergence des suites, de la norme : une partie peut étre bornée pour une
et savoir la caractériser par les coordonnées en di- norme, et non bornée pour une autre.
mension finie. . . . ,
Ens1o € Croire qu’'une partie qui n’est pas ouverte est né-
. 5 . ) . A N
v/ Savoir montrer qu’'une partie est/n’est pas ou- cessairement fermée : penser & [0, 1] dans R.

verte/fermée. Utiliser les suites pour montrer
qu’une partie est fermée.

v' Savoir expliquer & l'aide des suites ce qu’est une
partie dense.

6.1 Normes sur un espace vectoriel

Exercice 1 (Centrale-Supélec 2022, extrait). Montrer que toutes les normes sur R sont proportion-
nelles a la valeur absolue.

Exercice 2 Pour tout (z,y) dans R?, on pose N(x,y) = max(|z|, |y|, |z — yl)-
1. Montrer que N est une norme sur R2.

2. Représenter sa boule unité.

Exercice 3 Soit A = (z,9) et B = (2/,y’) dans R%. On note AB la distance euclidienne entre A et B,
cest-a-dire \/(z — 2/)2 + (y — /). On pose alors

_ AB si O, A, B sont alignés,
d(A,B) = { OA + OB sinon.

On dit que d est la distance SNCF sur R?.
1. Proposer une explication de cette appellation.

2. On admet que d vérifie les trois axiomes d’une distance (I'inégalité triangulaire est fastidieuse a
montrer). Représenter la boule fermée de centre (1,0) de rayon 2.

3. En déduire que d n’est pas normique, c’est-a-dire qu’il n’existe aucune norme || - || sur R? telle
que d(A,B) = ||A — B|| pour tous A et B dans R2.

Exercice 4 Sur I'espace E = €!([0, 1], R), on pose, pour toute f dans E,
L= 11 lloonfo,17 + 1 oo, f0,1)-
Montrer que || f|| est correctement défini et que || - || est une norme sur E.

Exercice 5 On pose F = {f € 6'([0,1],R) | f(0) = 0}, et, pour toute f dans F, N(f) = || /'|loc,0.1]-
1. Montrer que F est un sous-espace vectoriel de 61([0, 1], R) et que N est une norme sur F.

2. Montrer que N et || - [o,[0,1) De sont pas équivalentes. Indication : on pourra considérer la suite
(:L‘ = xn)nG]N-
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n
Exercice 6 Pour chaque P dans R[X] s’écrivant P = > a;X*, on pose
k=0

Ni(P) = Jax lak] et No(P) = 31[10pu |P(z)].
<k< z€(o,

Montrer que Nj et Ng sont des normes sur R[X], mais qu’elles ne sont pas équivalentes.
Exercice 7 (Centrale-Supélec). SiM € Jl,(R), on pose ||[M||2 = 1/tr(MT - M) et [|M||o =  ax | ;.
ILIN
1. Expliciter ||M]|2 en fonction des coefficients de la matrice M.

2. Montrer que ||[MNll2 < [[M]|2 - [[N|l2 pour toutes M et N dans M, (R). Indication : utiliser
linégalité de Cauchy-Schwarz dans R™.

3. Montrer que 'on a seulement ||[MN||s < n||M||oc||N|loc pour toutes M et N dans Jl,(R).

4. Montrer que pour toute norme || - || sur 4, (R), il existe ¢ > 0 tel que |[MN|| < ¢- ||[M]] - [|N]|
quelles que soient M et N dans J/(,(R).

6.2 Suites dans un EVN

Exercice 8 Pour tout entier n, on pose f,, = x +— z" et on se place dans I'espace €([0,1],R).
Montrer que (fy)nen converge pour la norme || - ||y (0,1, mais pas pour la norme || - || j0,1-

Exercice 9 Soit A dans o,(R). On suppose que (A*)cy est une suite convergente dans J(,,(R). Que
peut-on dire de sa limite ?

Indication. On utilisera le fait, démontré o ’exercice 15, qu’un sous-espace d’un EVN de dimension
finie est toujours fermé.

Exercice 10 Soit A dans J(, (IK). On suppose qu'’il existe une suite (az,) € KN telle que la série 3 a A*
converge. Montrer que la somme de cette série est un polynéme en A. Indication. On utilisera le fait,
démontré a Uexercice 15, qu’un sous-espace d’un EVN de dimension finie est toujours fermé.

Exercice 11 (ACV = CV ?) Pour tout P dans R[X] on pose ||P| = max |pn| o0 py, est, pour tout
entier n, le coefficient de degré n de P.

1. Montrer que || - || est correctement définie et que c’est une norme sur R[X].

2. Montrer que la série > 5= X" est absolument convergente dans (R[X], || - ||).

3. Montrer cependant que > 5= X" ne converge pas dans (R[X], ]| - ).

Exercice 12 (x) (Des suites dans l’espace des suites!) On note £>° Iespace des suites réelles bornées,
muni de la norme || - || et ¢p celui des suites qui converge vers 0. Enfin, on note W le sous-espace de
co des suites valant 0 & partir d’un certain rang.

Montrer que N = cq.

6.3 Topologie sur un EVN

Exercice 13 Soit n dans IN*. L’espace vectoriel J(,,(R) est muni d’une norme quelconque.
1. Montrer que GL,,(R) est une partie ni bornée, ni convexe, ni fermée, mais qu’elle est ouverte.

2. Si n > 2, montrer que SL,(R) est partie ni bornée, ni convexe, ni ouverte, mais qu’elle est
fermée. Et sin =17

Rappel. L’ensemble SLy,(R) est celui des matrices de M, (R) dont le déterminant vaut 1.

Exercice 14 Soit A une partie d’un espace normé (E, || - ||).
1. Montrer que A est la réunion de toutes les parties ouvertes incluses dans A.

2. En déduire que A est le plus petit fermé contenant A.
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Exercice 15 (topologie des sev). Soit (E, | - ||) un espace normé.

1. Montré que tout sous-espace vectoriel F distinct de E est d’intérieur vide (donc n’est jamais une
partie ouverte) ;

2. On suppose ici que dim(E) < co. Montrer tout sous-espace vectoriel de E est fermé. Indication :
on utilisera des coordonnées dans une base adaptée.

3. On ne suppose plus E de dimension finie. Soit F un sous-espace vectoriel de dimension finie de
E. Montrer que F est fermé. Indication : si (zp)nen € FYN converge vers £, on pourra considérer

F + Vect(?).
4. It E=%6([0,1],R) et F = {f € E| f(0) = 0}. Montrer que F est un sous-espace vectoriel fermé
pour || - ||ec mais pas pour || - 1.

Exercice 16 (topologie des hyperplans). On se place dans un EVN E de dimension quelconque.
1. Montrer que si F est un sous-espace vectoriel de E, alors F en est un aussi.

2. En déduire qu’un hyperplan est ou bien fermé, ou bien dense dans E.
Exercice 17 (topologie des boules). (E, | -||) est un EVN.

1. Soit a € E et r > 0. Montrer que B°(a,r) = Bf(a,7) et que Bf(a,r) = B°(a,r).
2. (%) Soit a,a’ € E et 7 > 0. Montrer que B°(a,r) = B°(d/,7") = [a =d et r=r'|.

Remarque. Ces propriétés deviennent fausses en général dans un espace métrique.

Exercice 18 (Plus impressionnant que difficile). Soit (E, || - ||) un EVN quelconque et soit A C E. On
admet ici (cf. exercice 14) que A est un ouvert de E et que A en est un fermé.

1. Montrer que A = A et que A=A

2. Si E = R, muni de sa valeur absolue en tant que norme, exhiber une partie A telle que les sept

— o
o — "o =2 o

ensembles A, A, A, A, A, A et A soient deux a deux distincts.
Indication. On cherchera A sous la forme XUY UZ avec X une partie dense dans [0,1] et Y un
fermé d’intérieur vide.
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De la réduction (partie 1)

v

Maitriser le vocabulaire de base et savoir définir
tous les trucs propres.

Savoir calculer un déterminant de fagon efficace
(le plus factorisé possible) pour trouver les valeurs
propres d’une matrice carrée ou d’'un endomor-
phisme (en dimension finie, évidemment).

Avoir compris le lien entre endomorphisme diago-
nalisable et matrice carrée diagonalisable.

Savoir déterminer des sous-espaces propres en ré-
solvant des systémes linéaires.

Savoir établir qu’une matrice est diagonalisable.

& Oublier de préciser la non nullité d’un vecteur

propre. Ainsi, si A € K et s’il existe x € E tel que
f(x) = Az, on ne peut pas conclure que A est une va-
leur propre de f. En effet, cette égalité est toujours
vraie, quel que soit A, en prenant z = Og.

Croire qu’une matrice diagonalisable a des valeurs
propres toutes distinctes : la réciproque du théo-
réme du cours n’est pas vraie ! Il suffit de se souvenir
de la matrice nulle pour s’en convaincre.

Croire qu’une combinaison linéaire de matrices
diagonalisables est aussi diagonalisable. Il faut

Savoir que la dimension d’un sous-espace propre est connaitre le contre-exemple :

majorée par la multiplicité de la valeur propre a la- 11 1 0 01
quelle il est associé. (0 0) + ( 0 O) = (0 ())
Connaitre la condition suffisante pour qu’une ma-

trice n X n soit diagonalisable : admettre n valeurs

distinctes.

Savoir qu’'une matrice n’ayant qu’une valeur propre

n’est diagonalisable seulement que lorsqu’elle est

proportionnelle a la matrice identité.

Savoir montrer que le spectre d’'une matrice nilpo-

tente est réduit a {0}.

Savoir diagonaliser une symétrie ou une projection.

7.1 Exercices de base

Exercice 1 Soit n un entier naturel non nul et A dans J(,(K).

1.

2.

Montrer que A et AT ont exactement les mémes valeurs propres.

11

On pose A = <O 9

). Montrer que A et AT n’ont pas les mémes sous-espaces propres.

Exercice 2 Trouver A et B dans Jl>(IR) non semblables mais telles que y, = xp-

Exercice 3 Soit A une matrice inversible de taille n.

1.

2
3.
4

Rappeler pourquoi 0 ¢ Spy(A).

. Montrer que Spy (A1) = {3 | € Spk(A)}.

Pour chaque A\ dans Spyi(A), montrer que E%(Afl) =E\(A).

. Siy, =ap+aiX+ ...+ a, X", démontrer que y -1 = % [an +an1 X+ ...+ aoX”} : C’est le

polynéme y, «lu a l'envers » ! (et normalisé).

Exercice 4 Montrer que les matrices suivantes sont diagonalisables sur R et déterminer leurs éléments
propres.

2 -2 1
A—(‘Q1 i) B=[ 2 -3 2
-1 2 0

Calculer toutes les puissances de A et B (pour B, trouver un polynéme annulateur de degré 2).
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Exercice 5 (oral CCINP). Diagonaliser ; : |, matrice de taille n > 2.
0o ...

= o
—

1
Exercice 6 (théoréme spectral en dimension 2).

1. Soit a, b, ¢ trois réels. Montrer que (a ﬁ) est diagonalisable sur R.

b

2. Trouver une matrice symétrique 2 x 2 a coefficients dans C qui n’est pas diagonalisable sur C.

Exercice 7 (Centrale 2024). Soit n un entier naturel non nul et soit A et B dans Jl,,(C). Montrer que
xa(B) € GL,(C) <= Sp¢(A) N Spe(B) = @.
Montrer que cette équivalence est fausse si on remplace C par R.

Exercice 8 On pose E = 6°°(I,R), ou I est un intervalle de longueur non nulle. On note D 'opérateur
de dérivation. Déterminer ses éléments propres.

Exercice 9 On pose E = IK[X] et on note D I'opérateur de dérivation. Déterminer ses éléments propres.

Exercice 10 On note E le sous-espace de RN" constitué des suites indexées par IN* ayant 0 pour
limite. On considére ’endomorphisme D de E défini par Du = (up41 — Up)nen+ pour tout élément u
de E. Déterminer les éléments propres de D.

Exercice 11 Soit n dans IN. Pour tout P dans R, [X], on pose ¢(P) =P — (X + 1)P’.
1. Montrer que ¢ € Z(R,[X]).
2. Justifier que ¢ est diagonalisable.

Exercice 12 (CCINP). On pose A = (? g)

1. Montrer que A est diagonalisable sur R, et préciser une matrice inversible P telle que P~'AP
soit une matrice diagonale D.

2. Montrer que I'’équation M? + M = A d’inconnue M & chercher dans Jl2(RR) est équivalente &
'équation X? + X = D d’inconnue X & chercher dans Jl2(R).

3. (a) Soit n dans IN* et A une matrice diagonale de Jl,,(IK) dont les éléments diagonaux sont tous
distincts. On suppose qu'une matrice M commute avec A. Montrer que M est diagonale.

(b) En déduire toutes les solutions de I’équation M2 + M = A.

7.2 Les grands classiques
Exercice 13 (diagonalisation simultanée). Soit E un C-espace vectoriel de dimension finie et soit u, v
des endomorphismes de E tels que uov = v o u.

1. Montrer que u et v ont un vecteur propre en commun.

2. On suppose que u et v sont diagonalisables. Montrer qu’il existe une base dans laquelle les
matrices de u et v sont diagonales. Traduire ce fait matriciellement.

3. Application. Si u et v commutent et sont diagonalisables, montrer que u + v est diagonalisable.

Exercice 14 (matrices carrées de rang 1).

1 1 1 1

1. Trouver « sans calcul » les valeurs propres de la matrice § § § ; , et montrer qu’elle est
4 4 4 4

diagonalisable. Méme question avec la matrice J de Jl,,(R) (ot n > 2) dont tous les termes sont

égaux a 1.
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2. Plus généralement, soit A dans Jl,(R) une matrice de rang 1 (ot n > 2). Montrer que A est

semblable & une matrice de la forme <%‘i>

3. En déduire que A? = tr(A) - A.
4. Montrer que A est diagonalisable si et seulement si tr(A) # 0.
Exercice 15 On pose E = 6([0,1],R). Pour tout f dans E, on note T(f) la fonction définie par
T(7)(0) = £(0) et .
voeln, T()a) = | ra
0
1. Montrer que T est bien un endomorphisme de E.

2. Déterminer ses éléments propres.

Exercice 16 (densité de GL,(IK)) Soit n un entier naturel non nul.
1. Si A, (K), montrer que pour tout entier k assez grand, A — 11, € GLy,(K).
2. En déduire que GL,,(IK) est dense dans Jl, (K).

k=1
Exercice 17 (matrice compagnon). Si P = X* + Y~ ;X! € K[X] est un polynéme unitaire de degré
i=0

k, on pose
0 —ag ]
1 0 —aq
Cp = 1 € My (K).
0
L I —ap—1l

1. Montrer que X, = P.
P

2. On suppose que P posséde une racine A dans K. Déterminer dim E; (Cp).

3. En déduire que Cp est diagonalisable si et seulement si P est scindé a racines simples.

Exercice 18 Soit n un entier naturel non nul et A dans J(,,(C).
1. Si (A¥)ien est bornée, montrer que les valeurs propres de A sont de module inférieur a 1.

2. Si (A¥)rew converge, montrer que sa limite est un projecteur. Qu’en conclure sur le spectre de
cette limite ?

Exercice 19 (une preuve du théoréme de Cayley-Hamilton). Soit E un K-espace vectoriel de dimension
finie non nulle n et soit u dans £(E). On souhaite montrer que Y, (u) est 'endomorphisme nul.

1. Soit z un vecteur non de E. Justifier 'existence du plus grand entier p tel que (z,u(x), ... uP~1(z))
soit une famille libre, que I’on notera %,. On pose ¥, = Vectk (z, u(x),...,uP~(z)).

2. Vérifier que 7 est stable par u, et donner la matrice de ’endomorphisme induit u, sur ¥, dans
la base %,.

3. On note y, le polynome caractéristique de u,. Prouver que y, (u,) = 0, et conclure.
7.3 Suites récurrentes et systémes différentiels

/ g —
Exercice 20 Résoudre le systéme différentiel { x/ = dx -3y,
y = 2z —3y.

Exercice 21 Résoudre ’équation différentielle 3" — 23" — 1/ +2y = 0 en la transformant en un systéme
différentiel linéaire d’ordre 1.

Exercice 22 Déterminer toutes les suites (a,)new € RN telles que pour tout n € IN,

apt3 = 2ap42 + Qpy1 — 2ap.
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7.4 Les exercices plus techniques

Exercice 23 On pose E = 6([0,1],R). Pour tout f dans E, on note T(f) la fonction définie par

1
Ve 0,1, T(f)(z) = f min(z, £) £(£)dt.
0
Montrer que T est bien un endomorphisme de E et déterminer ses éléments propres.

Exercice 24 (Tube inter-concours). Soit n dans IN* et A, B dans Jl, () telles que AB — BA = A.
1. Montrer par récurrence que Yk € IN*, A¥B — BA* = kAF.
2. En considérant ’endomorphisme ® : X — XB — BX de Jl, (K), montrer que A est nilpotente.

Exercice 25 (sous-espaces stables et transposée) Soit E un K-espace vectoriel de dimension finie non
nulle n et f dans £(E). On note A la matrice de f dans une base % de E. On considére enfin ’hyperplan
H d’équation a1z1 + ...+ apx, = 0, et on pose C = (ay,...,a,)7.

1. Montrer que H est stable par f si et seulement si C est vecteur propre de AT.

2. Application 1. Montrer que tout endomorphisme d’'un R-ev de dimension 3 posséde au moins
un plan stable.

3 5 —1
3. Application 2. Déterminer tous les sous-espaces stablesde | 0 1 —2
0 2 3

Exercice 26 (commutant d’un endomorphisme diagonalisable) E est un K-espace vectoriel de dimen-
sion finie non nulle n. Si f € £(E), on pose

Fp={g9eZ(E)|fog=gof}
Dans toute la suite on suppose que f est diagonalisable.

1. Vérifier que I'y est un sous-espace vectoriel de £ (E).

2. Soit g dans Z£(E). Montrer que g € I'y si et seulement si chaque sous-espace propre de f est
stable par g.

3. En déduire que dimI'y = Y (my)?, olt my, est la multiplicité de A dans X,
reSp(f)

Exercice 27 Une R-algébre est un quadruplet (A, +, x,-) ot (A, +, ) est un R-espace vectoriel et x
une « multiplication » c’est-a-dire une application bilinéaire de A? dans A. Cette algébre est dite

— associative quand x est associative : V(a,b,c) € A%, ax (bx ¢) = (a x b) x c.

— wunitaire quand X posséde un neutre (souvent noté 15) : Va € A, a x 15 =15 X a =a.
De plus, une R-algébre associative unitaire (A, +, X, ) est dite @ division quand tout élément non nul
v est inversible c’est-a-dire quand

Va € A\{0a}, IbEA axb=bxa=1,4.

Le but de cet exercice est de montrer qu’excepté (R, +, X, ), toute R-algébre a division de dimension
finie est nécessairement de dimension paire.

1. Donner un exemple de R-algébre a division de dimension 2, puis une de dimension infinie. Si
n € IN*, est-ce que (M,(R),+, X, ) est une R-algébre a division ?
2. Soit (A, +, X, ) une R-algebre a division de dimension finie n. Imaginons un instant que n soit
impair.
— Soit a dans A \ {0}. Justifier que L, :  +— a x = est un endomorphisme de A et montrer
qu’il a au moins une valeur propre.
— En déduire que A est isomorphe & R (en tant qu’algébre : I'isomorphisme f : A — R doit en
plus vérifier f(a x b) = f(a) x f(b) et f(1a) =1) et conclure.

L’exercice 38 du TD n° 2 donne ’exemple d’une R-algebre a division de dimension 4.
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Avoir compris que les limites et la continuité dans
les EVN sont une simple généralisation de ce que
I’on apprend dans un cours de 1" année pour les
fonctions de R dans R : la valeur absolue a été
remplacée par des normes.

Savoir montrer qu’une partie est fermée (resp. ou-
verte) en l’écrivant comme 'image réciproque d’une
partie fermée (resp. ouverte) par une application

Des limites et de la continuité dans les EVIN

& Croire qu'une fonction continue définie sur un

fermé-borné est toujours bornée : c’est faux en di-
mension infinie en général.

Essayer de montrer qu’une application linéaire est
continue en revenant a la définition générale : c’est
extrémement rare, on utilise presque toujours le cri-
tere lipschitzien « ||f(x)|| < kx| ».

Pour une fonction « de deux variables » (z,y) —

continue. f(z,y), confondre linéarité par rapport au couple

(z,y) et bilinéarité (linéarité par rapport a chacune
des deux variables).

v/ Savoir montrer qu’une application est lipschit-
zienne.

v' Savoir établir qu’une application linéaire est conti-
nue : la question ne se pose qu’en dimension infinie,
car en dimension finie elles sont toutes continues.

v' Savoir ce qu’est une application multilinéaire et
une application polynomiale (en connaissant les
exemples de base).

8.1 Topologie dans les EVIN

Exercice 1 Prouver par trois méthodes que Z est un fermé de R :
1. en prouvant que son complémentaire est un ouvert.
2. par la caractérisation séquentielle des fermés.

3. en voyant Z comme l'image réciproque d’un fermé par une application continue.

Exercice 2 Soit n dans IN*. L’espace Jl,(R) est normé par une norme quelconque.

1. Montrer que GL,(R) est un ouvert de J(,(R) et que SL,(R) (matrices de déterminant 1) en
est un fermé.

2. Montrer, a l’aide de suites, que ’ensemble &,,(C) des matrices complexes n x n diagonalisables
sur C n’est ni fermé, ni ouvert.

3. Soit || - || une norme sous-multiplicative de Jl,,(R) : [|AB|| < |[|A||||B]| pour toutes matrices A et
B dans J(,(R). Démontrer que |[M|| > 1 pour toute M dans SL,(R). On pourra raisonner par
labsurde.

Exercice 3 Soit n dans IN*. On note £ ’ensemble des couples (z,y) de R x R™ formant une famille
liée.
1. Si z et y sont dans R™, montrer que la famille (x,y) est libre si et seulement s’il existe i,

Ty :L'j 0
Yi Yy 7

2. En déduire que & est un fermé de R™ x R"™ (normé par une norme quelconque).

distincts dans [1,n] tels que

Exercice 4 On note ¢! le sous-espace vectoriel de CN constitué des suites complexes (an)nen telles

oo
que > |a,| converge. Si a € £, on pose ||al| = 3 |an].

n=0

1. Montrer que || - || est une norme sur £!.

o0
2. On pose A = {a el Y a, = 1}. L’ensemble A est-il ouvert ? Fermé ? Borné ?

n=0
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Exercice 5 (somme de deux fermés). On pose
A={(z,y) eR?|zy=1} et B={0} xR.

1. Montrer que A et B sont des fermés de R?.
2. Prouver que A + B (défini comme étant {a + b | (a,b) € A x B}) n’est pas fermé.

Exercice 6 Soit E un IK-espace vectoriel de dimension finie. Montrer que ’ensemble des projecteurs
de E est un fermé de £(E). Montrer qu'’il n’est pas borné (on pourra raisonner matriciellement).

Exercice 7 (jauge de Minkowski).

8.2 Limites et continuité

Exercice 8 Montrer que f : R?\ {(0,0)} — R définie par f(x,y) = 2::%/ 5 N'a pas de limite en (0, 0).
24y

Exercice 9 En utilisant la caractérisation séquentielle, montrer que la fonction 1g est discontinue en
tout point.

Exercice 10 Soit n dans IN* et A dans Jl,(R). On suppose que la suite (A*)zcn converge vers P.
Montrer que A et P commutent et que P est une matrice de projection.

Exercice 11 (Centrale-Supélec). Soit A une partie non vide d'un EVN (E, || - ||). Pour tout x dans E,
on note d(z, A) la borne inférieure de ’ensemble {||z — al| : @ € A} : c’est la distance de = a A.

1. Montrer que 'application x +— d(x, A) est lipschitzienne (donc continue) de E dans R.
2. Si A est fermé, montrer que d(z,A) =0 <= z € A.

3. Donner un exemple de situation ou d(z,A) =0 et x ¢ A.

4

. (%) L’espace 6([0,1],R) est muni de la norme || - [|. On note A I’ensemble des f de 6([0,1],R)
telles que f(0) =0 et fol f = 1. Calculer d(0, A) et montrer que cette borne inférieure n’est pas
atteinte bien que A soit un fermé.

Exercice 12 Soit n dans IN*. On rappelle que GL,,(IK) est dense dans J(, (K).
1. Soit A et B dans Jl,(IK). Si A est inversible, montrer que X, =X,
B

2. Montrer que cette égalité est vraie méme si A n’est pas inversible.

Exercice 13 Soit n dans IN*. On rappelle (cf. TD n° 5, exercice 3) que pour toute matrice M de J,, (IK)
il existe un unique polynéme my; unitaire, annulateur de M, de degré le plus petit possible parmi tous
les polynémes annulateurs non nuls de M.

1. Justifier que my € K, [X].

0 - 0 a
00 K K, [X
2. Que vaut myp si M= | . .. | et a € K*? En déduire que '/%"(N} : nn[ ) n’est
: Lo M
0 0 0

pas continue.

Exercice 14 (Centrale 2025). Soit I un intervalle. On pose C = {(x,y) € I? | z < y}.
1. Si F:R? — R est une fonction continue, montrer que F(C) est un intervalle.
2. En déduire que si f : I — R est continue et injective, alors f est strictement monotone.

3. Exhiber une fonction f : R — R injective mais pas strictement monotone.
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8.3 Applications linéaires continues

Exercice 15 On note 8 la forme linéaire P — P(0) de R[X]. On note N, Ng et N3 les normes sur
R[X] définies par

1
Ni(P) = max|a,|, N2(P) :f |[P(¢)|dt, Ns3(P)= sup |P(?)]
nelN 0 t€[0,1]

(ot ay, est le n-iéme coefficient de P). Pour quelles normes & est-elle continue ? Calculer sa constante
de Lipschitz |||5]|| le cas échéant.

Exercice 16 L’espace E = €([0,1],R) est muni de la norme || - |00, et 'espace F = €([0,1],R) de la
norme N définie par N(f) = || f]lco + || //]lco- On considére l'application ¥ : E — F définie par

x
VfEE, W(f) :a:'—>f F(t) dt.
0
Montrer que ¥ est une application linéaire continue. Déterminer sa constante de Lipschitz [|[¥]]].

Exercice 17 (Grand classique). On note E l'espace E = 6([0, 1], R) que ’on munit de la norme || - ||oo-
On considére 'application ® : E — R définie par

1/2

1
VIEE, @(f)= | Jd- Wf(t)dt.

1. Montrer que ® est une application linéaire continue.

2. (x) Déterminer [||®]|| et montrer qu’il n’existe pas f dans E \ {0} tel que |||®]| = %.

3. Déduire de cette impossibilité que le théoréme des bornes atteintes tel qu’énoncé dans le cours
n’est pas valable en dimension finie.

Exercice 18 (Centrale-Supélec 2022). Soit E et F des K-espaces vectoriels normés et u dans £ (E, F).
1. On suppose que F = K : u est donc une forme linéaire.

(a) Siu est continue, expliquer pourquoi Ker(u) est une partie fermeée de E.

(b) Réciproquement, on suppose Ker(u) fermé. On souhaite montrer que u est continue. Imagi-
nions que cela ne soit pas le cas.

i. Justifier 'existence d’une suite (2, )nen de la boule unité de E telle que 1irJrrl lu(z,)| =
n—-+0o0

+o0. En particulier, u(x,) # 0 a partir d’un certain rang N.

u(xN)

ii. En considérant la suite <xN — xn) , trouver une absurdité.
n>=N

2. On ne suppose plus que F = K. Montrer que la condition « Ker(u) fermé » n’implique pas
forcément la continuité de w.

Exercice 19 On pose E = 6°°([0,1],R) et on note D I’endomorphisme f — f’. Montrer que D n’est
pas continue, et ce quelle que soit la norme que 'on met sur E. Indication : utiliser (z — €™),en.

o0

Exercice 20 (Centrale-Supélec). Si P € R[X], on écrit P = > a;X¥ et on pose
k=0

o0 1
Ni(P) = max|ag|, Na(P)=> lax|, N3(P) :f [P(t)[dt, N4g(P)= sup [P(t)].
kelN s 0 tef0,1]

On a déja vu que cela définissait des normes sur R[X].

1. Montrer que la dérivation P — P’ n’est pas continue pour Ny, ni pour Ny, N3, Ny.
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o0 oo
2. (%) Trouver des réels pg, p1, ... de sorte que > apX* — 3 pilag| soit une norme sur E et telle
k=0 k=0
que D soit continu.

Exercice 21 (Centrale-Supélec, écrits 2020) Pour tout réel s dans [0, 1], on note ks la fonction définie
sur [0, 1] par
t(l1—s) sit<s,

vie[0,1], ky(t) = { s(1—t) sit>s.

On note E lespace 6([0,1],R) que 'on munit de || - ||, et pour tout f dans E, on désigne par T(f)
la fonction définie sur [0, 1] par

1
vse 0.1, TN = | RfO
0
1. Représenter la fonction ks dans un repére orthonormé, le réel s étant quelconque.
2. Montrer que T est un endomorphisme continu de E.

3. Déterminer |||T|||.
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Des intégrales généralisées

Etre au point sur le cours de 1" année concernant
les intégrales de fonctions continues sur un segment.

Savoir expliquer ce qu’est une fonction continue par
morceaux sur un segment, et sur un intervalle quel-
conque (attention, on a besoin des premiéres pour
expliquer les secondes).

Etre irréprochable sur les résultats tournant autour
du théoréme fondamental du Calcul intégral (hypo-
théses, conclusions...).

Avoir compris que pour les fonctions continues par
morceaux qui ne sont pas continues, le changement
de variable doit — en plus d’étre de classe €' —
étre strictement monotone.

Savoir définir une intégrale généralisée sur un inter-
valle quelconque et connaitre les intégrales généra-
lisées de référence.

Connaitre les intégrales faussement généralisées
classiques : celles de zIn(z) et de w

Maitriser 1'outil des relations de comparaison (<, o,
O et ~) pour prouver la convergence (ou I’absolue
convergence) d’intégrales généralisées.

Savoir adapter 'intégration par parties et le chan-
gement de variable aux intégrales généralisées.

Savoir définir les espaces IL! et I.? et connaitre leur
structure.

Dire qu’une fonction par morceaux sur un segment
c’est, une fonction dont la restriction sur chaque in-
tervalle d’une subdivision est continue : il manque
le comportement aux bornes de ces intervalles.

Croire que la composée de deux fonctions cpm est
une fonction cpm. Un contre-exemple a été donné.

Oublier de préciser que f est continue pour écrire
[Ifl=0= f=0.

Oublier de mettre les bornes dans le bon sens dans
s dera o . b

I'inégalité triangulaire concernant )fﬂ f ‘

Faire des sommes de Riemann sur des intégrales
généralisées & des intervalles qui ne sont pas des
segments.

Croire que la dérivée de = — [7 f(t)dt est =
f(x) — f(a) : c’est I'horreur absolue!

Calculer | 01 x dx ou pire : f: 1dz, en calculant une
primitive. Le Calcul intégral est avant tout un cal-
cul d’aires, et on espére que vous connaissez celle
d’un triangle ou d’un rectangle.

Présenter u et v’ pour faire une ipp : la bonne ré-
daction est de présenter u et v, dire qu’elles sont de
classe B!, et annoncer la formule.

Oublier de préciser la constance du signe lors
des comparaison avec équivalence pour établir la
convergence d’intégrales généralisées.

Faire des choses compliquées pour établir la conver-
gence d’une intégrale... sur un segment !

9.1 Exercices de base

Exercice 1 (autour du théoréeme fondamental du Calcul intégral).

1. Relever toutes les erreurs, en pointant la plus grave, qui apparaissent dans laffirmation « Si
F(z) = [7 f(t)dt alors F'(z) = f(x) — f(a) »? Corriger cette phrase en présentant tous les
objets et les hypothéses nécessaires sur iceux.

2. Soit f : R — C continue. Si b: R — R est dérivable, montrer que I'application
b(z)
O:x— f f(t)de
0

est dérivable sur R, et exprimer ®'(z) pour tout réel x.

400
3. Soit f : R — C continue. Si f(;L > f converge, montrer que la fonction x — J f(t)dt est
x

définie et dérivable sur R, et donner sa dérivée.

Exercice 2 Nature des intégrales généralisées suivantes.

400 1 400 Gin2 400 1
f " dz, J ln(.1+t) ar, f sin”(t) ar, J t ar, J .dﬁ 7
0 o sin(?) 0o 1+¢ 1 BHVE-1 o sin()
! 1) f“‘oo ds fz dt f“‘oo elt L In(t) oo
sin (=) dz, , . ° at, J Y, f et In(t) dt
Jo <$ o ch(s) 1 \/t(2—1) 0o Vit 0o V1—1t2 0 )
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Exercice 3 1. Justifier que si I est un intervalle borné, alors L2(I, K) C L(I, K).

2. Montrer, si I = [1, +oco[, qu’il n’y a aucune relation d’inclusion entre L!(I, K) et L%(I, K).

o0 7 — sin(x)

Exercice 4 Discuter selon les valeurs du réel o la nature de J S dx.
0 X
Too dt
Exercice 5 Grace & une intégration par parties, calculer J TRTIVE
o (1412

T dz
Exercice 6 Grace au changement de variable z = 2Arctan(t), calculer I'intégrale f _
0 2+ cos(x)

9.2 Les grands classiques

Exercice 7 (intégrales de Bertrand). Soit o et 3 des réels. Montrer que

teo dx
f ————— converge <= [cx>10u(o¢zletf>>1)].
2 z®InP(z)

dx
%[ In(z)[?

ol

En déduire que J converge <= [oc <lou(x=1letp> 1)}
0

Exercice 8 (l'intégrale de Dirichlet).

0 sin(x) o .
1. Montrer que ——~ dz converge (on fera une intégration par parties sur [1, +00[).
0 T
0 sin(x) ,
2. Montrer que dz n’est pas absolument convergente.
0 T
Indication : remarquer que |sin(z)| > sin?(z) = 1_%3(290)
Exercice 9 (la fonction Gamma d’Euler).
+oo
1. Montrer que si Re(z) > 0, alors J t*~Le7t dt est convergente. On note I'(z) sa valeur.
0

2. Déterminer I'(n) si n € IN* en se servant d’une intégration par parties.

3. Calculer I'(1) en admettant que [;"° e dg = @, puis T'(%) pour tout n dans IN*.

i

Exercice 10 Nature et calcul de fQ In(sin(x))dz. Indication : changement de variable © = 2t.
0

1
Exercice 11 Pour tout entier naturel k, montrer que J tk In(t) dt est convergente et calculer sa valeur.

0
1
En déduire la valeur de J in(ti
0o 1—

dt.

Exercice 12 Soit a > 0 et b > 0.

t

be bx e—t
dt et lim - dt, calculer I.

. +o00 efat _ efbt
1. Etudier la convergence de I = f —dt.
0
ot
t T—=+00 J 4r

2. Aprés avoir déterminé lim
€e—0

e>0 ag

teo dt
Exercice 13 (x) Pour tout n dans IN*, calculer f —_—
o (L+t2)"
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9.3 Les exercices plus techniques

+oo In(1 o
Exercice 14 (Centrale). Déterminer les couples (o, 3) dans R? pour lesquels f In(1 +2% dz converge.

0 P
Les représenter dans un plan.

Exercice 15 (Centrale).
1

1. Montrer que f : xz — + — L%J est continue par morceaux sur |0, 1], et la représenter dans un

repére.

1
2. Nature et calcul de J f(t)de.
0

100 gin(t
Exercice 16 (Dirichlet via Riemann-Lebesgue). L’intégrale (dite de Dirichlet) J sin(t) dt est semi-

0
convergente. On se propose de trouver sa valeur.

1. Soit f : [a,b] — C une fonction de classe 8% et w > 0. Grace & une intégration par parties,
b
montrer que lim J f(H)e™ dt = 0.
n—+oo J,

2. (%) Montrer que le résultat subsiste pour les fonctions continues par morceaux. Utilisant la
densité des fonctions en escalier vue en MPSI. Ce résultat s’appelle le lemme de Riemann-
Lebesgue.

3. Pour tout entier naturel n, on pose

5 = Jz sm((2'n +1)t) & et K, — J‘2 sin((2n + 1)t) gt
0 sin(t) 0

Montrer que J, et K,, sont des intégrales convergentes.
4. Montrer que ¢ : t — % — ﬁ est prolongeable par continuité en 0.
5. Exprimer K,, — J,, a 'aide de la fonction ¢ et que (J,)nev est une suite constante.
6. Conclure grace au lemme de Riemann-Lebesgue.
- +Oo
Exercice 17 (x) (Ecole Polytechnique). Nature de J | sin(x)|* dz.
1

Indication : découper suivant [nm, (n + 1)), observer que © < 4 et se servir des intégrales de Wallis :

3 [
in"(t)dt ~ ¢/ —.
J;) sin"(t) 5

Johann P. G. Lejeune DIRICHLET
(1805-1859) Le sinus cardinal
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De la réduction (partie 2)

v" Connaitre le théoréme spectral, et savoir caractéri- & Se mélanger les pinceaux et dire que si M est dia-
ser les matrices symétriques dont les valeurs propres gonalisable, alors son polynéme caractéristique est
sont toutes positives. scindé a racines simples : il suffit de penser a I,

v Savoir que si P € K[X] annule M € J,(K), alors (déja diagonale...) pour s’apercevoir que c’est une
les valeurs de M sont des racines particuliéres de P. anerie.

V' Savoir énoncer la CNS de diagonalisabilité qui fait & Connaitre les ONS de ce chapitre et oublier les dé-

intervenir des polynémes annulateurs scindés a ra-

: : finitions : étre diagonalisable ce n’est pas avoir un
cines simples.

) o ) polynéme annulateur scindé a racines simples, c’est
v Connaitre la CNS de trigonalisabilité, qu’il ne faut étre semblable & une matrice diagonale.

pas confondre avec la définition !
& Croire que trigonaliser c’est facile, un peu comme

diagonaliser en plus court : c’est tout le contraire!
Pratiquez, pratiquez, pratiquez !

v/ Savoir que toute matrice (réelle ou complexe) est
trigonalisable sur C.

v Savoir trigonaliser les matrices 2 x 2.

V' Avoir pratiqué 3 ou 4 fois la trigonalisation d’une & Croire qu'une matrice symétrique positive est une
matrice 3 x 3. C’est assez technique, et ¢a ne s’in- matrice symétrique avec des coefficients positifs.
vente pas le jour de la khélle/du DS. C’est un brin plus compliqué que cga.

10.1 Exercices de base

Exercice 1 Expliquer pourquoi toute matrice triangulaire inférieure est semblable a une matrice tri-
angulaire supérieure.

2 -1 -1
Exercice 2 1. Montrer que | 2 1 —2 | n’est pas diagonalisable.
3 -1 -2
2. Montrer qu’elle est trigonalisable sur R, et la réduire.
0 11
3. Mémes questions avec | —1 1 1
-1 1 2

Exercice 3 Soit M une matrice de /2 (C) qui n’est pas diagonalisable. Montrer qu’il existe un complexe

a tel que M est semblable a <a i) Est-ce vrai dans Jl2(R) ?

0

—2x+ 3y —6x+ 6y
r—y 3z — 2y
que E est plan vectoriel de Jl2(R) constitué¢ de matrices diagonalisables sur R.

Exercice 4 (Centrale-Supélec, extrait). Soit E = {( ) c(x,y) € RQ}. Montrer

2 1 =2
Exercice 5 1. Déterminer les réels a telsque A= | 1 a —1 | ne soit pas diagonalisable sur R.
11 -1

2. Si a est un tel réel, trouver P dans GL3(R) telle que P~'AP soit triangulaire supérieure.

Exercice 6 (Centrale 2024). Soit N le sous-espace vectoriel engendré par les matrices nilpotentes de
Mo (R).
1. Soit M dans Jl2(RR). Montrer que tr(M) = det(M) = 0 si et seulement si M est nilpotente.

2. Montrer que lapplication (x,y, z) — (a: y

) est un isomorphisme de R? sur 9.
z —x
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10.2 Matrices symétriques positives

Exercice 7 Soit n dans IN* et M dans Jl,(R). Montrer que M € & (R) si et seulement s’il existe A
dans M, (R) telle que M = AT x A.

Exercice 8 (CCINP). Si (p,q) € (IN*)?, on pose n = p + g. On considére A; dans JM,(R), Ay dans

My(R) et B dans JMy,4(R) et on pose
A | B
A= (ﬁ) |

On suppose que A € &,FT(R). Justifier que A; et Ay sont symétriques définies positives.

Exercice 9 Soit n dans IN* et M dans &, (R). Montrer que lim tr(Mk)% = max Spr(M).

k—o00

Exercice 10 (Centrale 2023). Soit n dans IN* et soit A et B dans &, (R). On suppose A # 0.
1. Montrer que Vi € [1,n], [A];; > 0. Montrer de plus que iy € [1,n], a;,,i, > 0.
2. Démontrer que tr(AB) > 0.

Exercice 11 (Mines-Ponts). Soit n dans IN*, A dans &,/ (R) et B dans J(,(R). On suppose que A et
B anticommutent, c’est-a-dire AB = —BA. Montrer que AB = BA = 0. Indication. Traiter d’abord le
cas ot A est diagonale.

Exercice 12 (Racines carrées dans &,F (R)). Soit n dans IN* et A dans &, (R).
1. Montrer qu’il existe R dans &, (R) telle que R? = A.

2. On veut mieux faire : on considérant un polynéme interpolant les points (X, ﬁ) quand A décrit
Spr(A), montrer que R peut étre choisie dans R[A].

3. Soit R’ dans %} (R) telle que (R’)2 = A. Montrer que R et R’ commutent, puis que R = R.

Exercice 13 Ecrire les expressions suivantes sous la forme XTSX avec S symétrique et X matrice
colonne. Reconnaitre celles qui gardent un signe constant.

1. qi(z,y) = 2® + xy + 2. Tracer I'ensemble €; : qi(z,y) = 1.
2. q2(z,y) = —32% + 4xy + y2. Tracer I'ensemble € : g2(z,y) = 1.
3. qz3(w,y, 2) = 222 + 2% + 22 — 2yz + 222. Tracer 'ensemble €3 : g3(x,y,2) = 1.

Exercice 14 Grace a un développement limité a I'ordre 2, trouver la nature des points critiques des
fonctions suivantes.

fo(x,y) — 2° 4 3zy® — 152 — 12y et g:(z,y) — z + 9> — 3ay.
Exercice 15 Soit n dans IN*. On définit une relation binaire < sur J,(R) par
Y(A,B) € M,(R)?, A<B<+<=B-Ac% (R).
Montrer que < est une relation d’ordre sur J,(RR). Est-elle totale ?

Exercice 16 (Rayon spectral). Soit n dans IN*. Si A € Jl,,(R), on pose p(A) = max{|\| | A € Spc(A)}.
1. Justifier la bonne définition de p(A) quelle que soit la matrice A dans J(,(R).

2. On considére I’endomorphisme canoniquement associé upy € £ (A, 1(R)), et on munit M, 1 (R)
de la norme euclidienne || - || définie par ||X]||2 = vVXTX. Démontrer que [|ual|| = \/p(ATA).

IAX]l2

Rappel. On note |||ual|| la constante de Lipschitz de ua, ¢’est-a-dire sup X

X0
Indication. Remarquer que ATA € %7 (R). Quelles sont ses valeurs propres en fonction de celles de

A?
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Exercice 17 (Mines-Ponts). Si n € IN*, on identifie R" avec Jl, 1(R), et donc Ml ;(R) avec R.
On considére une matrice A de ¥,/ (R) et un vecteur B dans R". On pose, pour tout X dans R",
f(X) = $XTAX — BTX.

1. Calculer le gradient de f. Montrer que f admet un point critique et qu’il est unique.

2. Montrer que f admet un minimum, et le calculer.

10.3 Les grands classiques

Exercice 18 Soit n dans IN* et M dans Jl,(R)
1. Si M est symétrique, démontrer que Spe(M) C R.
2. Si M est antisymétrique, démontrer que Spe(M) C iR.

3. Si M est antisymétrique et inversible, justifier que n est pair, que M? est diagonalisable sur R,
puis que M l'est sur C.

4. Donner un exemple de matrice antisymétrique réelle non diagonalisable sur R.

Exercice 19 Soit n un entier au moins égal a 2.

1. Si une matrice M de J,(C) est telle que M* = I,, pour un certain entier non nul k&, montrer que
M est diagonalisable.

2. Montrer que ce résultat est faux pour les matrices réelles, par exemple si n = 2.

3. Soit k dans IN* et M dans GL,(C) tels que M* soit diagonalisable. Montrer que M ’est aussi.

On commencera par montrer que MF posséde un polynome annulateur P a racines simples tel
que P(0) # 0.

4. Montrer que ce résultat est faux si M n’est pas inversible.

Exercice 20 (Centrale-Supélec). Soit n dans IN* et A dans J,,(C). On note L P'application de JL,,(C)
dans M, (C) définie par La (M) = AM (c’est la multiplication & gauche par A).

1. Montrer que A est inversible si et seulement si La est bijective.
2. Montrer que A et Ly ont méme spectre.

3. Aprés avoir calculé (La)* pour tout entier k, montrer que A est diagonalisable si et seulement
si L Dest.

Exercice 21 (Art & Métiers). Soit n un entier au moins égal & 2. On considére Iapplication

M (C) — M, (C)

v M — M- tr(M)L,.

1. Détailler ¥ o U et trouver un polynéme annulateur de W.

2. Montrer que ¥ est diagonalisable, déterminer ses éléments propres et en déduire tr(¥) et det ().

Exercice 22 Soit n dans IN*. Déterminer les éléments A de J,,(K) tels que < (A) ﬁ ) soit diagona-

lisable. On commencera par calculer les puissances de cette matrice.

Exercice 23 Soit n dans IN* et M dans Jl,(C). On suppose que tr(M*) = 0 pour tout k& dans IN*.
Montrer que M est nilpotente.

Exercice 24 (matrices circulantes). Soit n un entier au moins égal a 2. On note J la matrice de format
n X n suivante :

010 ...0
0 01 0
0 1
1 00 0
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1. A l'aide de I’endomorphismes associé, calculer J* et en déduire que J est diagonalisable sur C.

2. Déterminer le spectre complexe et les espaces propres de J.

3. Siag,ai,...,a,—1 sont des complexes, calculer le déterminant de la matrice
a a2 -+ Qn-—1
Gp—1 Qag -+ 0an-2
al a2 PEEEEY ao

Indication : on pourra exprimer cette matrice comme un polynéome en J.

10.4 Exercices plus techniques

Exercice 25 (Centrale-Supélec, extrait). On pose A = (g g) et B = (Z Z

suppose que o 7# 3. Si B + zA est diagonalisable pour tout complexe z, montrer que B est diagonale.

> dans JMl2(C), et on

Exercice 26 (Centrale-Supélec).
1. Soit M dans JMl2(R) telle que Spr(M) C {0}. Est-ce que M est forcément nilpotente ?
2. Soit M dans JMl2(R) telle que Spr(M) = {0}. Est-ce que M est forcément nilpotente ?

3. Montrer que toute matrice de Mla(R) est la somme de matrices dont le spectre est inclus dans
{0}
Exercice 27 (Centrale-Supélec, extrait). Soit n dans IN* et A dans J(,(IK). On appelle classe de
similitude de A I’ensemble des matrices qui sont semblables a A : c’est {P7'AP | P € GL,,(K)}.
1. Si A € K, quelle est la classe de similitude d’une matrice de la forme Al 7

2. On suppose que A est diagonalisable. Montrer que sa classe de similitude est une partie fermée
de Jl,,(K).

3. Montrer que quelle que soit A, la classe de similitude de A n’est jamais une partie ouverte de
M, (K). Indication : un sous-espace affine d’un EVN E, distinct de E, n’est jamais une partie
ouverte.

Exercice 28 (caractérisation topologique de la nilpotence, Ecole polytechnique). Soit n un entier au
moins égal a 2.

1. Soit A dans J,(C). Pour tout € > 0, montrer qu'il existe P, dans GL,(C) telle que P;1AP,

soit une triangulaire supérieure T = (; ;) 1<i<n OU [t; ;| < € pour tous ¢ < j dans [1,n].
1<5<n

2. Pourquoi ne peut-on rien imposer aux coefficients ¢;; 7

3. En déduire que A est nilpotente si et seulement si la matrice nulle est adhérente a la classe de
similitude de A, c’est-a-dire & I'ensemble {P~!AP | P € GL,(C)}.

Exercice 29 (caractérisation topologique de la diagonalisabilité, Ecole polytechnique). Soit n dans N*
et A dans Jl,,(C). On note X¢(A) sa classe de similitude : {P71AP | P € GL,(C)}.

1. Montrer que si A est diagonalisable, alors X¢(A) est fermée.
2. Grace a l'exercice précédent, montrer la réciproque.
3. Cette caractérisation est fausse dans R, et nous allons le monter.

(a) Soit A et B dans J(,,(R) semblables sur C, c’est-a-dire telles qu’il existe P dans GL,,(C) avec
A = PBP~!. Montrer qu’elles sont semblables sur R. Indication. On posera P = Q+iR avec
Q, R réelles et on utilisera la fonction polynome x — det(Q + xR).

(b) Montrer que A = <(1) _01> est telle que Xr(A) est fermée mais n’est pourtant pas diagona-
lisable sur R.
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Exercice 30 (endomorphismes semi-simples, Centrale-Supélec 2024 ). Soit E un K-espace vectoriel de
dimension finie (non nulle). Un endomorphisme u de E est dit semi-simple quand tout sous-espace
vectoriel stable par u posséde un supplémentaire stable par w.

Sin € N* et si M € M, (K), on dit que M est semi-simple si 'endomorphisme canoniquement
associé & M est semi-simple.

- . . 0 1
est semi-simple, mais pas .

0
1. Montrer que < 0 0

1 0
2. On suppose dorénavant K = C.

(a) Soit u un endomorphisme diagonalisable. Montrer que u est semi-simple. On pourra justi-
fier la complétion d’une famille libre quelconque par des vecteurs propres de u pour qu’elle
devienne une base de tout l’espace.

(b) On suppose que u est semi-simple et on pose F = @ E,(u). Aprés avoir justifié que F
AESpe(u)
était stable par u et considéré un certain endomorphisme induit, montrer que u est diagona-
lisable.

3. Si K =R, un endomorphisme semi-simple est-il toujours diagonalisable ?
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Avoir compris les différences entre convergence uni-
forme et convergence simple, et savoir illustrer gra-
phiquement une convergence uniforme.

Savoir montrer qu'une convergence n’est pas uni-
forme par plusieurs moyens (cf. méthodes).

Savoir établir la convergence normale d’une série de
fonctions.

Savoir intervertir limites, intégrales,
sommes avec les hypothéses idoines.

dérivées,

Utiliser a bon escient la convergence uniforme (ou

Des suites et des séries de fonctions

Croire que la convergence sur tout segment entraine
la convergence uniforme globale.

Essayer de montrer qu’une suite de fonctions
converge normalement : ce mode de convergence est
propre aux séries de fonctions.

Oublier de regarder en premier la convergence nor-
male d’une série de fonctions : c’est bien plus facile
que la convergence uniforme.

Ne pas penser & établir une convergence uni-
forme/normale sur tout segment, voire sur toute

normale) sur tout segment, pour prouver une conti-
nuité par exemple.

partie de la forme [a, +oo[, pour montrer une conti-
nuité par exemple.

11.1 Exercices de base

Exercice 1 Pour chaque entier naturel non nul n, on note f;,, la fonction t s nEsin™(¢) cos(t) ’

oll o est un parameétre réel.

1. Montrer que, quel que soit o, (fy)nen+ converge simplement vers la fonction nulle.

2. Montrer qu’il y a convergence uniforme si et seulement si o < % Indication : on pourra étudier
les variations de f.

3. Caractériser les réels o tels que ) f, converge normalement sur [0, 5].

z? sin (%) six #0,
0 sixz =0.

1. Etudier la convergence simple puis uniforme de (fy,)nen+ sur R.

Exercice 2 Pour tout n dans IN* et tout réel x, on pose f,(z) = {

2. Si a € R%, étudier la convergence uniforme de (fy,)nen+ sur [—a,al.

Exercice 3 Etudier la convergence uniforme sur R, de la suite (f,)nen+ o, pour tout entier naturel
: x

non nul n, f, est la fonction x +— e

Exercice 4 Pour tout entier n, on pose f,, = x +— e "*sin(nx), définie sur Ry..

1. Etudier la convergence simple de (f,)nen sur Ry, puis la convergence uniforme sur [a, +oo[, ot
a > 0.

2. La CVU sur tous les intervalles [a, +00[ quand a > 0 entraine-t-elle la CVU sur |0, +oo[ 7

Exercice 5 (pas d’interversion). Pour tous n dans IN \ {0, 1} et x dans [0, 1], on pose

nx s 0<z<%
fa@) =2 —nPz+2n si l<<az<?2
0 si %ga:gl.

1. Représenter f,, pour quelques valeurs de n, et justifier que f, est continue pour tout n.
2. Montrer que (f,)nen converge simplement sur [0, 1].

3. Montrer que l'interversion limite-intégrale n’a pas lieu. Qu’en conclure ?
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1

Exercice 6 Pour chaque n dans IN*, on pose f, = z — o Montrer que la série de fonctions > f,

converge simplement vers une fonction dérivable sur R.

1

Exercice 7 (une hypothése manquante). Pour chaque n dans IN*, on note f,, la fonction z +— /22 + =

définie sur R.
Montrer que chaque f,, est de classe €' sur R, que (f,)nen+ converge uniformément sur R vers une
fonction f qui n’est pas de classe €' sur R.

Exercice 8 (CCINP.) Justifier qu’on définit une fonction continue sur [0, 1] en posant

oo

q)(J:)ZZ:<1”L1:c_niaz:)’

n=2

1
puis calculer J $(z)dz.
0

Exercice 9 Pour chaque entier n, on pose f, = z — Arctan (”TJ””), définie sur R .
1. Etudier la limite simple de la suite de fonctions (fy,)nen-
2. Grace au théoréme de la double limite, prouver que la convergence n’est pas uniforme sur R .

3. Montrer qu'il y a convergence uniforme sur |0, m] ot m > 0 est quelconque.

Exercice 10 (Centrale 2023). Soit I un intervalle et (f,)new une suite de fonctions continues sur I
a valeurs dans R convergeant uniformément localement vers une fonction f : I — K. Soit aussi deux
suites (up)nen et (vn)nen & valeurs dans I convergeant respectivement vers £ et ¢/, deux éléments de 1.
Démontrer que

n—oo

Vn VA
lim f fa0dt= [ fed
U 0

11.2 Les grands classiques
Exercice 11 (convergence d’un produit). Soit (fn)nen €t (gn)nen deux suites de fonctions de I dans

K.

1. Si (fn)nen et (gn)nenw convergent simplement sur I vers f et g respectivement , montrer que
(fngn)nen converge simplement vers fg.

2. Si (fn)nen et (gn)new convergent uniformément sur I, montrer que ce n’est pas forcément le cas
pour (fngn)nen. Indication : prendre fp : x — % et gn:x—x surl=R.

3. Si (fu)nen et (gn)nenw convergent uniformément sur I vers f et g respectivement et si f et g
sont bornées sur I, montrer que (f,gn)nen converge uniformément sur I vers fg.

Exercice 12 Soit (P,,)nen une suite de fonctions polynomiales, définies sur R tout entier. On suppose
que (Py,)pen converge uniformément sur R vers une fonction f.

1. Montrer qu'il existe un entier N tel que Vn > N, Va € R, |Pn(x) — Py ()]

2. En déduire que f est nécessairement polynomiale.

1.

N

Remarque. Ce résultat est faux sur un segment : on peut montrer que toute fonction continue sur un
segment est la limite uniforme d’une suite de fonctions polynomiale (théoréme di a Weierstrass).

Exercice 13 On admet que sur un segment, toute fonction continue est limite uniforme de fonctions
polynomiales (cf. exercice précédent). Soit f : [a,b] — R continue telle que |, 5 t" f(t)dt = 0 pour tout
entier n. Montrer que f = 0.

Exercice 14 Soit (P,)nen une suite de fonctions polynomiales dont tous les degrés sont majorés par
un entier d, toutes définies sur un intervalle I quelconque (mais de longueur non nulle). On suppose
que (P;,)pen converge simplement sur I vers une fonction f.
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1. Montrer que f est une fonction polynomiale de degré au plus d. On pourra utiliser les polynémes
interpolateurs de Lagrange.

2. Prouver que la convergence de (P, ),en vers f est en fait uniforme sur tout segment.

3. On suppose que I n’est pas borné et que (P, )nen converge uniformément sur I. Montrer qu’il
existe une suite réelle (¢,,)nen convergeant vers 0 telle que 'on ait P, = f 4 ¢, pour tout n
suffisamment grand.

11.3 Exercices plus techniques
Exercice 15 Pour tout (n,z) dans IN* x R4, on pose fn(z) = (1+ £)" et gn(z) = (1 4+ Z)7".
1. Montrer que (f,)nen converge simplement vers f : z — e® et que (g, )neN converge simplement
vers g : x — e ",
2. Montrer que (fp)nen converge uniformément localement sur R4 mais pas globalement.

3. En se servant de l'inégalité ¢ — % < In(1 + t) < t valable pour tout réel positif ¢, montrer que
(gn)nen converge uniformément sur tout intervalle de la forme [0, a], ou a > 0.

4. On souhaite montrer que (gn)nen converge uniformément sur Ry. Pour ce faire, on considére

e > 0 quelconque.
€

(a) Justifier qu'il existe a > 0 tel que e™® < £.

(b) Montrer alors il existe un entier Ny tel que Vn > N1, [[gn — 9lloo,[a,4-00[ < Z
(c) En utilisant 3., montrer qu'il existe un entier Ny tel que Vn > N, [lgn — gllsc,j0,q] < § et

conclure.
. = (—1)"
Exercice 16 Pour z > 0, on pose S(z) = nZ:O o
1. Justifier que S est définie et de classe €' sur RY.
2. Préciser le sens de variation de S.
3. Etablir que Vo € R%, S(z + 1) + S(z) = 2.
4. En déduire un équivalent simple de S en 0, puis en +oc0.
S n
Exercice 17 (CentraleSupélec). On admet que pour tout z € C, e* = ) Z; (série absolument conver-
gente). Le but est de montrer que "
SP\P
Vze C, € = lim (1—1——) .
p—00 P
1. Démontrer ce résultat quand z € R en utilisant la fonction In.
2. Développer (1 + %p)p par la formule du binéme.
3. On fixe z € C. Pour tout k£ € IN et tout z € R4, on pose
folw) = m(m—l)...(m—k+1)ik Sk

k! xk
et 0 sinon. Etudier la limite de (f5(p))zen pour chaque p € IN fixé.
4. Etablir la convergence normale de > f; sur R, et conclure par le théoréme de la double limite.

Exercice 18 (CentraleSupélec, extrait). On considére la fonction

£ 00— o)
' x — 2z(l —2x)

et on pose f, = fo...o f (n fois) pour tout n € IN*.

1. Etudier la convergence simple sur [0,1] de (f,)nen+, et justifier qu’il n’y a pas convergence
uniforme sur [0, 1].

2. Prouver néanmoins qu’il y a convergence uniforme sur tout segment inclus dans |0, 1].
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Des espaces probabilisés

12.1

Savoir montrer qu’un ensemble est dénombrable en
construisant une bijection de IN vers cet ensemble.
Connaitre les ensembles dénombrables usuels : IN*,
Z, Q et savoir que R n’est pas dénombrable (donc
C non plus, il va sans dire...)

Savoir qu’une réunion dénombrable d’ensembles dé-
nombrables est dénombrable.

Savoir définir ce qu’est une tribu sur un ensemble
non vide.

Savoir prouver qu'une partie est un événement en
utilisant des intersections/réunions dénombrables
et des complémentaires.

Avoir compris que sur un univers dénombrable, on
peut identifier les mesures de probabilité avec une
suite (pr) de réels positifs de somme égale a 1.
Bien maitriser les propriétés fondamentales des pro-
babilités qui sont nouvelles cette année : continuité
croissante ou décroissante et sous-additivité.
Connaitre le langage des probabilités condition-
nelles, des événements indépendants, des systémes
complets dénombrables.

Savoir utiliser la formule de Bayes aprés avoir dé-
crit un systéme complet dénombrable d’événements
adapté au probléme.

Ensembles dénombrables. Tribus

Ne pas avoir compris ce que signifie I C 2 (Q).
Les éléments de I sont des parties de €2, pas des
éléments de 2!

Croire qu’une mesure de probabilité est une fonc-
tion de Q dans [0, 1] : c’est une fonction de I (une
tribu) dans [0, 1].

Confondre « incompatibles » et « indépendants ».

Croire que l'indépendance mutuelle d’événements
Ai1,...,A, se traduit par P(A1 N ... N A,) =
P(A1)...P(Ay) : il faut en plus considérer toutes
les sous-familles finies quelconques de la liste
Aq, . A,

Croire que « A sachant B » est un événement. Cette
expression est trompeuse car on parle de la « pro-
babilité de A sachant B ». Il faut avoir compris que
cela désigne la probabilité de A pour une mesure de
probabilité notée Pg. En aucun cas lécriture (trés
dangereuse) P(A | B) signifie que I'on prend la pro-
babilité d’un soi-disant événement « A | B ».

Exercice 1 Déterminer toutes les tribus possibles sur I'ensemble {a, b, c}.

Exercice 2 Expliquer pourquoi R peut-étre considéré comme un Q-espace vectoriel, puis justifier que

la dimension de cet espace n’est pas de dimension finie.

Exercice 3 Soit f: R — R une fonction croissante.

1. Quel théoréme justifie 'existence d’une limite & gauche et & droite de f en tout point ?

2. On note E I’ensemble des points de discontinuité de f. Montrer qu’il existe une injection de E

dans Q. Qu’en déduire sur E?

Exercice 4 (CentraleSupélec, extrait). On appelle nombre algébrique (sur Q) tout nombre complexe
qui est racine d’un polyndéme & coefficients dans Q.

1.
2.

3.

Expliquer pourquoi les nombres %, i, 2°3/2, et v/2 + /5 sont algébriques.

On note A,, 'ensemble des nombres algébriques qui sont racines des polynéomes de Q,,[X]\ {0}.
Montrer que A, est dénombrable, et en déduire que I’ensemble des nombres algébriques est

dénombrable.

En déduire alors qu’il existe (beaucoup) de nombres transcendants, c¢’est-a-dire non algébriques.

Exercice 5 Soit E un ensemble quelconque.

1. Rappeler pourquoi {0,1}N n’est pas dénombrable. En déduire que I’ensemble NN des suites

d’entiers n’est pas dénombrable.

2. Montrer que ’ensemble 2, (IN) des parties finies de IN est dénombrable.
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3. En déduire que I'’ensemble des suites strictement croissantes d’entiers naturels n’est pas dénom-
brable.

Exercice 6 (une application topologique de la dénombrabilité). Soit (E,|| - ||) un espace normé. Une
partie A de E est dite connere par arcs quand pour chaque couple (a,b) de A2, il existe un arc continu
v :[0,1] — A tel que y(0) =a et y(1) = 0.
1. Démontrer que C* est connexe par arcs dans ’espace normé (C,| - |), mais que R* n’est pas
connexe par arcs dans (R, |- ]).
2. On souhaite montrer que si D est une partie dénombrable de C, alors C\ D est connexe par
arcs.
(a) Soit z dans C. Justifier qu’il existe une infinité indénombrable de droites tracées dans C,
passant par z.
(b) En déduire qu'’il existe au moins une droite passant par z ne rencontrant pas D. On pourra
écrire D sous la forme {z, : n € N} et raisonner par Uabsurde.
(c) Conclure.
3. Une application. Si n € IN*, montrer que GL,(C) est connexe par arcs. Si (A,B) € GL,(C)?,
on pourra considérer z — det((1 — z)A + zB).

12.2 Familles sommables

)
7>/ geQn[L,+oo]
rationnels compris entre 1 et 2 : combien en y a-t-il ?

Exercice 7 Montrer que la famille ( n’est pas sommable.On pourra s’intéresser aux

[e.°]
Exercice 8 La fonction zéta d’Euler-Riemann est donnée par {(z) = > niz pour tout x > 1.
n=1
o0
1. Gréace au théoréme de Fubini, démontrer que ) ({(k) —1) = 1.
k=2
2. Retrouver le fait que lim{ = 1.
+o00
[e.e]
Exercice 9 Soit o > 1. Pour tout entier n, on pose Rp(2) = 5 L (reste d’une série de Riemann).
k=n+1

1. Donner un équivalent de (R, (o))nen grace & une comparaison série-intégrale. En déduire les
valeurs de o pour lesquelles cette famille est sommable.

[e.°] o0
2. Pour de telles valeurs de o, montrer que Zo Rp(a) = Zl #
n= n=
[&.°]
Exercice 10 (Mines-Ponts) On rappelle que la fonction zéta est définie sur |1, +oo[ par {(z) = Y =
n=1
et que la suite (1 + % +...+ % — ln(n))nG]N* est convergente : on note y sa limite (constante d’Euler).
> /(1 1 k) -1
pemonrer ane v =1+ 32 (1411 (12 1)) pu ey =1 - 32 =1
émontrer que y + nz:; o + In - puis que y % A

12.3 Exercices de base

Exercice 11 (la question du chevalier de Méré (1607-1684)). Qu'est-ce qui est le plus probable :
obtenir au moins un 6 en langant 4 fois un dé, ou bien obtenir au moins un double 6 en langant 24 fois
deux dés?

Exercice 12 Soit P une mesure de probabilité sur (IN,% (IN)). Montrer que lim P({n}) = 0.
n—oo

Exercice 13 1. Montrer que l'on peut définir une mesure de probabilité P sur (IN,2 (IN)) en

imposant P({n}) = # pour tout entier n.
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2. Si k € IN, quelle est la probabilité qu’un entier choisi au hasard soit un multiple de k7

Exercice 14 On lance un dé & 6 faces équilibré et on s’arréte a I'obtention du premier 6. On admet
que l'univers [1,6]N" est muni d'une structure probabilisée (4, P) telle que pour tout n € IN*, et tout
(w1,...,0n) € [1,6]", la partie {w1} x ... {w,} x [1,6][*1+°l est un événement de probabilité =

1. Montrer que « s’arréter de jouer un jour » est un événement et qu’il est presque sir.

2. Quelle est la probabilité, une fois le jeu fini, de n’avoir obtenu que des nombres pairs ?

Exercice 15 (introduction auz chaines de Markov). Au pays des Bisounours, il fait souvent un temps
ensoleillé. De plus,

e ¢'il fait beau, il y a 80 % de chance qu’il fasse encore beau le lendemain.
e ¢’il ne fait pas beau, il y a 30 % de chance qu’il fasse encore moche le lendemain.

Pour chaque entier n, on note p, la probabilité qu’il fasse beau le n® jour au pays des Bisounours. On
schématise la situation par un graphe pondéré :

ot B et M sont les deux états (Beau et Moche).
1. Montrer que (p,)nen est une suite arithmético-géométrique.

2. Si on décide d’aller, un jour lointain, au pays des Bisounours, quelle chance a-t-on d’avoir du
beau temps ?

Exercice 16 Vous venez de passer un test pour le dépistage d’'une maladie rare, qui atteint 3 % de
la population. Hélas le test est positif et le médecin vous dit : « Chez les personnes atteintes, le test
est positif dans 90 % des cas; chez les sujets sains, il est négatif dans 95 % des cas ». Quelle est la
probabilité que vous ayez vraiment cette maladie ?

Exercice 17 La malculopathie est un mal qu’un professeur de mathématiques peut dépister en donnant
une page de calcul & ses étudiants. On a constaté qu’un étudiant atteint de ce mal fait plus de trois
erreurs dans cette page dans 99 % des cas. Un étudiant non atteint fait plus de trois fautes dans 1 %
des cas. On note p la probabilité qu'un individu soit atteint de malculopathie. Le test sera jugé fiable
si au moins 99 % des personnes qui font plus de trois fautes sont effectivement atteintes.

Que doit vérifier p pour que le test soit fiable ?

Exercice 18 (encore des chaines de Markov). La vie de Tinker est trés difficile : manger a sa gamelle,
dormir, chasser les souris (pour jouer, car il ne les mange jamais).

e Aprés avoir mangé, Tinker ne pense qu’a une seule chose : dormir.
e Apreés avoir chassé les souris, Tinker a faim les trois quarts du temps et sinon, il dort.

e Aprés avoir dormi, Tinker est partagé entre manger six fois sur dix, chasser les souris une fois
sur dix, ou dormir encore.

On note my,, d,, ¢, les probabilités que Tinker mange, dorme, chasse respectivement, a 1’étape n.
1. Représenter la situation par un graphe pondéré (cf. exercice sur le monde des Bisounours).

2. Si on note X,, le vecteur-colonne dont les composantes sont m,,,d,, c,, donner une relation
matricielle entre X,, 1 et X,, et en déduire X,, en fonction de Xy et de n.

3. Si, dans un jour lointain, on cherche Tinker, quelle est la probabilité que ce gros paresseux
dorme?
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Exercice 19 (utilisation d’une loi de Poisson). On étudie une population d’étres humains. Des sta-
tistiques ont établi que pour tout entier n, la probabilité qu’une famille ait n enfants est donnée par la

formule
2,17

Pn = k !

n!

ou k est une constante.
1. Déterminer la constante k.
2. On suppose qu'un enfant nait avec une probabilité % d’étre une fille.

(a) Calculer la probabilité qu’une famille ait au moins une fille.
(b) On suppose que parmi les enfants d’une famille il n’y a qu’une seule fille. Quelle est la
probabilité que cette famille posséde deux enfants?

3. Proposer un moyen de calculer le nombre moyen d’enfants par famille.

12.4 Les grands classiques

Exercice 20 1. Montrer que Vx € R, e* > 1 + x. Interpréter géométriquement.
2. Soit (A,)nen une suite d’événements indépendants d’un espace probabilisé (€2, o, P).

(a) Montrer que « aucun des A,, n’est réalisé » représente bien un événement : on le notera B.

o0
(b) Montrer que P(B) < exp (— > P(An)) (avec la convention e~ = 0).
n=0

Exercice 21 (loi du 0-1 de Borel). Soit (A,)nen une suite d’événements d'un espace probabilisé
(Q,4,P). On pose A*= (| | As.

nelN k>n
1. Justifier que A* est un événement et que w € A* si et seulement §’il existe une infinité de n pour
lesquels w € A,,. Indication : une partie de IN est finie ssi elle est majorée.
2. (lemme de Borel-Cantelli). On suppose que Y P(A,) converge. Montrer que P(A*) =0 : il est
donc presque impossible qu'une infinité de A,, se réalisent.

Indication : on posera B, = |J Ay et la continuité décroissante.
k>n

3. On suppose maintenant que les A, sont indépendants et que Y P(A,) diverge. Montrer que
P(A*) =1 :1il est donc presque certain qu’une infinité de A,, se réalisent.

Indication : on calculera P(A*) grace a l’exercice précédent.
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Exercice 22 Si k € IN*, on note kIN* ’ensemble des multiples (strictement positifs) de k. Si on choisit
un entier « au hasard », il semble intuitif que

— la probabilité qu’il soit pair est de %,

— la probabilité qu’il soit un multiple de 3 est de %,

— la probabilité qu’il soit dans kIN est de %
Nous allons pourtant montrer qu’il n’existe pas de mesure de probabilité P sur (IN*, 2 (IN*)) telle que
P(kIN*) = % pour tout k. Pour cela, nous admettrons que si (pg)gen+ désigne la suite croissante des
nombres premiers, alors pik diverge (cf. exercice 23 pour une preuve). Imaginons donc, un instant,
qu’une telle mesure P existe.

1. Montrer que les événements ppIN* (k € IN*) sont indépendants.

2. Déterminer 'événement () |J ppIN* (cf. exercice 21 question 1).

nelN* k>n
3. En utilisant I'exercice 21 (loi 0-1 de Borel), trouver une contradiction.

12.5 Les exercices plus techniques

o0

Exercice 23 (loi de Zipf, Centrale-Supélec). Si s € ]1,+00[, on pose {(s) = > .
n=1

1. Soit s > 1. Justifier qu'il exite une unique mesure de probabilité P, sur (IN*, 2 (IN*)) telle que

Ps({n}) = ﬁ pour tout n dans IN*.

2. Calculer P4(kIN*) si k € IN*.

3. On note (pg)ren+ la suite croissante des nombres premiers. Vérifier que les événements pjIN*
sont indépendants.

4. En étudiant P4({1}), montrer I'identité d’Euler

5. En se servant du fait que lim+ {(s) = +oo (démontré au chap. 11), montrer ce que l'on a admis
1
. . S£ 1
a lexercice 22, & savoir : kzl o = oo
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Des séries entiéres

Savoir démontrer le lemme fondamental d’Abel, et
avoir compris qu’il permet de caractériser le rayon
de convergence d’une série entiére : avant lui, il y a
CVA, aprés lui, il y a DVG.

Savoir trouver un rayon de convergence en utilisant
sa définition (avec un sup).

Connaitre les réflexes sans lesquels le moindre exer-
cice sur les séries entiéres donne mal & la téte. Par
exemple, si (an) est bornée, le rayon de > anz"
est supérieur ou égal & 1. Encore un exemple : si
> anzy diverge, on peut dire que R, < |z0].

Savoir quoi dire du rayon de convergence de la
somme et du produit de Cauchy de deux séries en-
tiéres.

Savoir expliquer pourquoi une fonction série entiére
est de classe €°° sur son intervalle ouvert de conver-
gence, et savoir exprimer ses dérivées.

Utiliser une série entiére pour résoudre une équa-
tion différentielle linéaire.

S’emmeéler les pinceaux entre série numérique, série
entiére (qui est une série de fonctions, mais que I'on
note comme une série numeérique!) et somme d’une
série entiére (qui est une fonction).

Appliquer la régle de D’Alembert sur une série la-
cunaire.

Se précipiter sur D’Alembert en oubliant la défini-
tion méme du rayon de convergence : il est élémen-
taire de trouver le rayon de ) 2™ oude ) 3" 2" sans
déranger D’Alembert. Vous impressionnerez posi-
tivement vos kholleurs si vous appliquez cette re-
marque.

Croire qu’une série entiére Y a,z" converge nor-
malement sur son intervalle ouvert de convergence :
c’est en général faux, il n’y a que CVN sur tout seg-
ment [—r, 7] inclus dans cet intervalle.

Croire que si la somme f d’une série entiére Y anx™
est continue en R,, alors la somme ZZO:O an Ry
existe. Penser & Y (—1)"z" dont la somme est z —
5 (ici Ra = 1).

Se tromper dans ’expression des dérivées k-iéme de
la somme d’une série entiére, notamment si ladite
série est lacunaire.

13.1 Exercices de base, rayon et somme de séries entiéres

Exercice 1 Soit ) a,z" une série entiére de rayon de convergence R, > 0.

1. On suppose qu'il existe zy dans C tel que |z9| = Rq et D apz{ converge absolument. Montrer
que Y a,z" converge sur tout le cercle de convergence.

2. Expliquer pourquoi le caractére absolu de la convergence de ) a2 est indispensable.

Exercice 2 Soit F une fonction rationnelle non nulle. Déterminer le rayon de convergence de la série
entiere Y F(n)z".

Exercice 3 Déterminer les rayons de convergence des séries entiéres proposées.

Zn(—l)"zn7 277123:_12"7 Ze_rﬂzn7 Zn|zn’ 72”!2”2, Z 2: Zn,
Z In (1 + %) z”, Zsin(e—n)zn’ Z Sin(n)z”, Z Sizll(;b)zn.

Exercice 4 Rayon de convergence et somme de la série entiére Y n2az".
. .. .o n .
Exercice 5 Rayon de convergence et somme de la série entiere ) 57 sur |0, 1], puis sur |-1,0[.

Exercice 6 (séries lacunaires)

1. On note R, le rayon de convergence de la série entiére ) a,2". Si k € IN*, montrer que le rayon
de convergence de Y a,z"" est ¥R,.
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2. Déterminer le rayon de convergence de ) 2%,

o0
Exercice 7 Grace a une série entiére, trouver la valeur de m.
n=0

Exercice 8 Pour tout entier n, on note a, la n® décimale de v/2.

1. Trouver le rayon de convergence de la série entiére réelle > a,z".

2. Déterminer l'intervalle de définition de sa somme.

3. Et si on remplace /2 par %? Et par %?

4. Déterminer la somme de la série entiére Y a,z™ ol a, est la n® décimale de % =0,323232....
5.

Soit r € Q. Montrer que la somme de la série entiére ) a,z™ o a, est la n® décimale de r et
une fonction rationnelle.

Exercice 9 (une croyance tenace, CentraleSupélec extrait).

oo
1. Donner un exemple de série entiére )  a,z™ de rayon de convergence égal a 1 telle que lim ) aja”
=17 n=0

existe et est finie mais telle que > a,, diverge.
2. On suppose ici que a, = 0 pour tout n € IN, que la série entiere > a,z™ est de rayon 1 et que

o0
lim  a,z™ existe et est finie. Montrer cette fois que Y a,, converge.
z—17 n=0

13.2 Les grands classiques

Exercice 10 (formule de Cauchy et théoréme de Liouville). Soit ) anz™ une série entiére complexe

dont le rayon de convergence R est non nul. On note f sa somme.

2n

1. Montrer que Vr € |0,R[, Vn € N, a,, = —— Flre)e .

2mrn
2. On suppose que R = 400 (on dit que f est une fonction entiére) et que f est bornée sur C.
Déduire de la formule de Cauchy que f est constante (théoréme de Liouville).

3. Donner un exemple de fonction entiére réelle qui est bornée sur R et cependant non constante.

A

"
&

Augustin Louis CAuCHY  Joseph LIOUVILLE Principe des zéros isolés
(1789-1857) (1809-1882)

Exercice 11 (principe des zéros isolés). Soit f la somme d’une série entiére > a,2" de rayon non nul
R. On suppose qu’il existe une suite (z)xew de complexes non nuls de D(0,R) telle que
VkeN, f(zx) =0 et lim z =0.
k—o0
1. Montrer alors que f est constamment nulle sur D(0, R).

Indication. Si f n’était pas nulle, il existerait un entier p tel que a, # 0. On aura tout intérét a
considérer le plus petit entier vérifiant cela.
2. En déduire que si f s’annule sur tout un intervalle de la forme |—¢, e[ avec € > 0, alors f = 0.
22026 gin (%) six #0,

3. Application. Montrer que la fonction f définie sur R par f(z) = { 0 iz —0

n’est pas DSEy.
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Exercice 12 (Mines-Ponts) Soit p un entier non nul et A dans ., (C). Déterminer le rayon de conver-
gence de la série entiére ) tr(A™)z", puis sa somme en fonction de y . Indication : toute matrice
A

compleze est trigonalisable).

Exercice 13 (x) (Ecole polytechnique). On pose W,, = fgg cos™(t)dt pour tout entier n. On rappelle
que W, ~ /5 (formule de Wallis, cf. chap. 3 dans la preuve de la formule de Stirling).

1. Déterminer le rayon de convergence de la série entiére > W,z".

2. Déterminer sa somme. Indication : on sera amené & faire un changement de variable u = tan(%).

13.3 Fonctions DSE,

sin(x)

Exercice 14 Gréace a la théorie des séries entiéres, montrer que la fonction sinus cardinal x —
(complétée en 0 par 1) est de classe 8 sur R tout entier.

Exercice 15 Soit f la fonction définie sur R par f(x) On veut montrer

{ x? sin (%) sixz #0,
0 siz = 0.
que f n’est pas DSEq de deux fagons différentes.

1. Montrer que f n’est pas de classe 6'. Conclure.

2. Trouver les zéros de f. Conclure avec l'exercice 11.
Exercice 16 Déterminer le DSEq de sin?(x). Indic. Utiliser une formule de Trigonométrie.
Exercice 17 Déterminer le DSEq de In(1 + z + 2?). Indic. Remarquer une progression géométrique.

Exercice 18 (équation de Bessel, Centrale). Pour chaque réel v > 0, on considére I’équation différen-
tielle

(Ey) : 2% +ty' + (t2 —v*)y = 0.
1. Montrer qu’il existe une unique solution de (Ep), notée Jo, qui soit DSEy et telle que Jo(0) = 1.

2. Montrer qu'il existe des solutions qui ne sont pas DSEq de (Eqg). On pourra se servir du théoréme
de Cauchy linéaire.

3. On revient au cas général : v € Ri. Montrer qu’il existe une unique solution de (E,), notée Jy,
o0
de la forme ¢t — t¥ > a,t™ avec ap = 1.
n=0

Exercice 19 Soit f : z — ArcsinQ(x). Grace a4 une EDL2 vérifiée par f, montrer que f est DSEq et
déterminer son développement.

Exercice 20 (une fonction plate). Soit f : R — R définie par

e~V s g 40,

vz € R, f(x):{O six =0.

Ainsi, f est clairement de classe €°° sur R*. Reste a I’étudier au voisinage de 0.
1. Montrer pour tout entier k, il existe un polynoéme Py, tel que Vz € R*, f*)(z) = P::T(,f)e_l/ﬁ.

2. En déduire que f est de classe €% sur R. Indication : on utilisera le théoréme de la limite de
la dérivée vu en premiére année.

3. Montrer que f n’est pas développable en série entiére, bien que sa série de Taylor-Maclaurin

(k)
> fT(O) ait un rayon infini.

Exercice 21 (une série entiére célébre, Centrale 2024). On considére f : x — ezx—17 définie sur R*.

1. Justifier que f se prolonge en une fonction f DSE en 0, et donner f (”)(0) pour tout n.
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2. Montrer que % est DSE en 0 avec un rayon R > 1. Indication : faire une anaylse-synthése et

3.

montrer que les coefficients b, du DSFE de % vérifient |b,| < 1

En considérant la série entiére complexe »_ b, 2", justifier que R < 2x

o0
Exercice 22 Gréace a la théorie des séries entiéres, déterminer la valeur de @ .
n=0 )

Exercice 23 (x) (Intégrale de Dirichlet, Centrale-Supélec).

1.

2.

3.

13.4

Rappeler pourquoi t — % se prolonge sur R en une fonction DSE( et donner son développe-
ment.

Soit @ > 0 fixé. En servant du DSEq de e* avec z = —ae™ 't

z L& (—1)ka2+1
N At =1 .
efo ¢ 2 kzz()(2k+1)(2k+1)!

, montrer que

a sin(t +oo sin(t) dt

Exprimer f sin®) 44 sous forme d’une série et en déduire la convergence et la valeur de n

Séries entiéres et dénombrement

Exercice 24 (Nombre de dérangements. Soit n un entier naturel non nul. On note &,, 'ensemble (le
groupe!) des permutations de [1,n]. On appelle dérangement de [1,n] tout élément o de &,, n’ayant
aucun point fixe. On note D, le nombre de dérangements de [1, n]. Par convention Dy = 1. On considére
la série entiére %z”, appelée série génératrice exponentielle associée a la suite (D,,).

1.
2.

3.

Calculer Dy et Ds.

Justifier que > %z" a un rayon de convergence non nul, et minorer ce rayon.

n
Expliquer pourquoi n! = > (Z)Dk Indication : compter les permutations en les rangeant par

nombre de points fixes.

o . N e ” D(—1)k
En déduire que la somme de cette série entiére est z — 1 et que Dy, = n! Y 5.
-z k=0

Cent personnes se rendent & une soirée mondaine, oul le dress code est smoking et chapeau haut
de forme. Tous laissent leur chapeau au vestiaire. La soirée étant fortement alcoolisée, le retour
au vestiaire est assez... chaotique. Quelle est la probabilité pour qu’aucun des convives ne reparte
chez lui avec son propre chapeau ?

(Bonus) Etablir que D,, = L%' + 3| sin € N*. Indic. Utiliser le reste d’une série alternée.

Une soirée mondaine Eugéne CATALAN

(1814-1894)

Exercice 25 (Nombres de Catalan). Soit n un entier naturel non nul. On appelle n° nombre de Catalan
le nombre de parenthésages possibles dans un produit de n + 1 nombres et on le note C,,. Par exemple,
sin =2, Cy =2 car (ab)c et a(bc) sont les deux seuls parenthésages possibles pour un produit de trois
nombres. Par convention, on pose Cy = 1.

1.

Déterminer C; et Cs.

o7



n
. Montrer que C,11 = > CxCp_k.
k=0

. On suppose pour U'instant que la série entiére > C,z™ a un rayon R non nul, et on note f sa
somme. Montrer que Vz € |-R,R[, zf(z)? = f(z) — 1.

. En déduire R et l'expression de f(z) en fonction de z.

5. Exprimer finalement C,, en fonction de n et en donner un équivalent.
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Des variables aléatoires discrétes

Savoir donner la définition d’une variable aléatoire,
et maitriser les notations (X = z), (X < z), etc.

Avoir compris que la loi d'une VARD se décrit
grace & un germe de probabilité : (pn)nen avec
pn = P(X = z,,), ol z,, sont les valeurs prises par

Croire qu’une variable aléatoire est simplement une
fonction définie sur Q a valeurs dans R (ou dans
n’importe quoi d’autre d’ailleurs).

Ecrire des choses dénuées de sens comme P(X)
quand X est une variable aléatoire.

X. & Ne pas avoir compris 'importance de la convergence
. e N )
v Savoir donner la définition de 'indépendance d’une absolue dans la définition de ’espérance.

famill iables aléatoires discrétes.

amille de variables aléatoires discrétes & Oublier 'hypothése d’indépendance dans E(XY) =

. E(X)E(Y) (avec 'hypothése d’existence de E(X) et
ginale. ) E(Y) bien sur).

v rcizr?::lgedelzelsa 222}22?:; de Tespérance, de la va- & Oublier 'hypothése d’indépendance dans V(X +

’ Y) = V(X) + V(Y) (avec ’hypothése d’existence

de V(X) et V(Y) bien sir).

& Oublier I'hypothése de positivité dans 'inégalité de
Markov.

v' Maitriser les notions de loi conjointe et de loi mar-

v' Maitriser le théoréme de transfert, indispensable et
d’usage fréquent.

v' Connaitre le lien entre la fonction génératrice Gx,
Pespérance E(X) et la variance V(X).

v Connaitre les lois 9 (p) et 2 (\), leur interprétation
probabiliste, leur espérance, leur variance, leur fonc-
tion génératrice. Plus important : savoir retrouver
rapidement tout ca.

v' Savoir expliquer l'approximation d’une loi bino-
miale par une loi de Poisson.

v' Savoir démontrer I'inégalité de Markov, et savoir
en déduire rapidement l'inégalité de Bienaymé-
Tchebychev et la loi faible des grands nombres.

14.1 Exercices de base

Exercice 1 On lance deux dés, un blanc et un rouge. On note X le nombre indiqué par le dé blanc,
et Y le maximum des numeéros indiqués par les deux dés.
1. Donner la loi du couple (X,Y).

2. En déduire les lois de X et Y. Les variables X et Y sont elles indépendantes ?

Exercice 2 Soit X une variable aléatoire suivant une loi uniforme % ([[1,N]), ou N € IN*.
Donner la fonction génératrice de X et en déduire I’espérance et la variance de X.

Exercice 3 Soit X une variable aléatoire suivant une loi binomiale %(n,p). On pose Y = 1.

X+1
Donner la loi de Y, puis calculer son espérance.

Exercice 4 Soit X et Y deux variables aléatoires indépendantes sur le méme espace probabilisé. On
suppose que X suit ?()\) et que Y suit P (u). Pour tout entier n, déterminer la loi de X sachant
(X+Y =n).

Exercice 5 Soit X une variable de Poisson de paramétre A > 0. Déterminer la probabilité pour que X
ne prenne que des valeurs paires.

Exercice 6 Soit A dans R et soit X une variable de Poisson de parameétre A. Déterminer E(ﬁ)

Exercice 7 Soit p dans |0, 1] et soit X une variable géométrique de parameétre p. Déterminer E(%)
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Exercice 8 Soit X et Y deux variables aléatoires indépendantes géométriques de paramétres respectifs
p et g. Calculer l'espérance de max(X,Y).

Exercice 9 Soit n un entier naturel non nul et X une variable aléatoire de loi ¢ (%)
1. Montrer que P(X > n?) < L.

n

2. Montrer que P(|X —n| >n) < 1— 1. En déduire que P(X > 2n) <1 —

3=

Exercice 10 Soit A > 0 et X ~ 2 ()\). En utilisant l'inégalité de Bienaymé-Tchebychev, démontrer
que P (X <) <tetP(X>20) <4

Exercice 11 Soit X une variable aléatoire réelle admettant une variance, et soit a > 0. On pose
m = E(X) et 0 = ox.
1. Pour tout A dans Ry, montrer que P(X—m > a) = P(X—m+Xt > a+)) puis que E((X—m+21)?) =

o2 + 212
2. Montrer alors que VA € Ry, P(X—m > a) < #ﬂéa)\ et en déduire que P(X—m > a) < 0,2?—71'2
3. Démontrer que P(|X —m| > a) < agziiiz : quand cette inégalité est-elle meilleure que celle de

Bienaymé-Tchebychev 7

14.2 Les grands classiques
Exercice 12 Soit X et Y deux variables aléatoires indépendantes géométriques de parameétres respec-

tifs p et ¢. Calculer la probabilité pour que la matrice <)0< 31{) soit diagonalisable sur R.

Exercice 13 (Centrale 2024 (extrait)). Soit p dans |0, 1].
On considére le polynome aléatoire Q = &; + 2&,X ou &;,&, ~» 4 (p) sont indépendantes. On pose

1 =2
aussi A = <

9 1 > Quelle est la probabilité pour que Q(A) soit inversible ?

Exercice 14 Soit (X,)nen une suite de variables aléatoires discrétes sur un espace mesurable (2, o)
a valeurs dans un ensemble E et soit N une variable aléatoire sur ce méme espace, mais & valeurs dans
IN. On définit la fonction Y : Q — E par

Vo €0, Y(0)= XN (©).
Montrer que Y est une variable aléatoire discréte sur (€2, o).

Exercice 15 (points fizes d’une permutation, Centrale 2023 (extrait)). Soit n dans IN*. On note &,
lensemble des permutations de [1,n] : on munit cet ensemble de la tribu discréte 2 (S&,,) et de la
probabilité uniforme P. Si i € [1,n], on définit la variable aléatoire X; : &,, — R par

1 sio(i)=1
0 sinon.

Vo € Gy, XZ(O') = {

1. Déterminer la loi de X;, et expliquer pourquoi les Xy, ..., X,, ne sont pas indépendantes.
2. Déterminer le nombre moyen de points fixes des permutations de &,,.
3. Calculer la variance de X1 + ...+ X,,.

Exercice 16 (identité de Wald). Soit N, Xy, ..., X,, ... des variables aléatoires indépendantes a valeurs
dans IN. On suppose que X1i,...,X,,... suivent toutes une méme loi, dont la fonction génératrice est
N
G. On considére alors la somme aléatoire S = > Xj.
k=1

1. Justifier que S est une variable aléatoire discréte et que Gg = Gy o G sur [0, 1].

2. On suppose que toutes les variables ont une espérance. Montrer que E(S) = E(N)E(X;).

60



Exercice 17 Soit X, Xg, X1, Xo, ... des variables aléatoires discrétes réelles sur un espace mesurable
(Q, o). Démontrer que ’ensemble des o € € pour lesquels X,,(w) tend vers X(w) quand n — oo est un
événement.

Remarque. Quand cet événement est de probabilité 1, on dit que la suite (X, )neN converge presque
stirement vers X.

Exercice 18 Grace aux fonctions génératrices, montrer qu'’il est impossible de truquer deux dés (a six
faces) pour que la somme d’un lancer de ces deux dés suivent une loi uniforme sur [2,12]. Indication :
quelles sont les racines réelles du polynome 1 +X + ...+ X102

Exercice 19 (moindres carrés). Soit X et Y deux variables aléatoires discrétes réelles admettant un
moment d’ordre 2. On suppose que V(X) > 0. Déterminer (a,b) dans R? tel que la quantité E([Y —
(aX + b)]?) soit minimale. Interpréter graphiquement.

Exercice 20 (tauzr de panne). Soit T une variable aléatoire définie sur un espace (2,4, P) a valeurs
dans N, telle que P(T > n) # 0 pour tout n dans IN. Dans la pratique, T représente l'instant (en
jours) o une machine va tomber en panne. On appelle tauz de panne de T la suite (ty,)nen définie par
Tn = P(T}n) (T = n)

1. Montrer que T, € [0, 1] pour tout entier n.

2. Exprimer grace a la suite t la probabilité P(T > n) pour tout n, et en déduire que > t,, diverge.

Exercice 21 Soit n dans IN* et X;,...,X,, des VARD sur un méme espace probabilisé admettant

toutes une variance. On appelle matrice de covariance la matrice C = (COV(Xi,Xj) € JM,(R).

1<i<n
1<jsn

Démontrer que C € ;I R.

Exercice 22 (le probléme du collectionneur). Chez les surgelés Picard, on peut acheter des galettes
des rois et chacune contient une féve. Sur 'emballage on peut voir qu’il y a six féves a collectionner
en tout. Si k € IN*, on note Xj; le nombre de galettes achetées ayant permis I'obtention de k féves
différentes.

1. Que vaut X; 7 Déterminer la loi de Xj1q1 — X.
2. En déduire le nombre de galettes moyen permettant d’obtenir la collection compléte des féves.
3. En supposant les Xy — X, indépendantes, calculer ox,. Qu’en conclure ?

4. Généraliser avec N féves et donner un équivalent de E(Xy) quand N — co.

, = TR
Une nouvelle féve ? Blaise PascaL Siméon Denis PoissoN  Henri POINCARE
(1623-1662) (1781-1840) (1854-1912)

Exercice 23 (loi de Pascal et loi binomiale négative). On considére un schéma de Bernoulli de para-
métre p : c’est une expérience aléatoire aboutissant & un succés avec une probabilité p, ou & un échec
avec la probabilité complémentaire 1 — p. Si n € IN*, on s’intéresse au nombre d’expériences qu’il faut
réaliser pour obtenir n succes.
1. Montrer que la loi de la variable aléatoire discréte X ainsi créée, a valeurs dans [n, +oo[ est
définie, pour tout entier k > n,

P(X = k) = (’“ 3 1)pn<1 —p),

n—1

La loi de X est alors appelée loi de Pascal de parameétres n et p, et se note P asc(n,p).
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2. Montrer que E(X) = 7 et V(X) = n(;;p). On pourra voir X comme la somme de n VARD
indépendantes.

3. Si X ~» Pasc(n,p), donner une interprétation de la variable Y = X —n. Prouver que Im(Y) = IN

et que

VeeN, P(Y=1¢) = (_gn)p”(p - 1),
ou (Z) a été défini pour tout (n,a) dans IN x C comme étant le nombre w Cette
égalité justifie le nom de la loi de Y : loi binomiale négative de paramétre (n,p) que l'on note
BN (n,p).

4. Pour mener & bien un projet, une entreprise doit réunir 6 ingénieurs ayant des compétences
pointues en informatique (notamment en Python!). Les recruteurs savent que la proportion de
tels ingénieurs est assez faible : 15 % parmi les candidatures regues seulement. Les entretiens
étant techniques, on ne peut se permettre d’auditionner plus de 4 candidats par jour.

(a) Combien de jours peuvent espérer mettre les RH pour réunir 1’équipe voulue ?

(b) Quelle est la probabilité qu’ils la constituent en moins d’une semaine ? Discuter la pertinence
de ce résultat en calculant un écart-type.

14.3 Exercices plus techniques

Exercice 24 (formule du crible de Poincaré). Soit (£2, d,P) un espace probabilisé.
1. Si A € d, rappeler pourquoi E(15) = P(A).
2. Justifier que pour tout (A, B) dans o2, 1ang = 14 x 1p.

n
3. Soit P le polynéme [] (X —rg) avec ry,...,r, € C. Si k € [1,n], on note o la somme de tous
k=1
les produits k a k des racines de P, c’est-a-dire o, = > 1y, ...7,. Expliciter, en fonction
11 <...<tp

de oy, les coefficients du polynoéme P.

4. Soit n dans IN* et Aq,..., A, des événements. Démontrer la célébre formule :
n n
P <U Ak> :Z(—l)k_l Z P(Azl ﬁﬂAZk)
k=1 k=1 1< <...<ip<n

Exercice 25 (marche aléatoire sur 7). Un point se déplace sur Z. Au départ, il est en 0. A chaque
étape, il se déplace d’un cran vers la droite ou d’un cran vers la gauche avec une probabilité identique.
Les déplacements se font de maniére indépendante.

1. Pour tout entier n, on note A, la position du point & I’étape n. Ainsi, Ay = 0. On note aussi
D,, le nombre de déplacements d’un cran vers la droite aprés n étapes.

(a) Donner une relation liant A,, et Dj,.
(b) Déterminer la loi de D,,.
2. Trouver la loi de A,, et en déduire que la série > P(A,, = 0) diverge.

On définit de la meéme facon une marche aléatoire sur Z%. En illustration, une marche aléatoire sur 7>
réalisée avec Python.
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Des intégrales a paramétre

Savoir expliquer pourquoi la convergence uniforme
est suffisante mais pas nécessaire pour intervertir
limite et intégrale sur un segment.

A contrario, savoir donner des contre-exemples de
suites de fonctions cpm (f,) convergeant uniformé-
ment sur un intervalle (nécessairement non borné)
sans pour autant qu’il y ait interversion limite-
intégrale.

& Trouver une fonction dominante qui dépend de n

(dans le cas de la convergence dominée) ou de x
(dans le cas des intégrales a paramétre).

Se mélanger entre la variable d’intégration, notée ¢
dans ce cours, et le paramétre, noté x ici. Bien sir,
on peut inverser toutes les notations. Notons qu’en
SI, le paramétre dans la transformée de Laplace se
note p (et c’est d’ailleurs un nombre complexe).

v' Connaitre parfaitement les hypothéses précises des & Tenter de faire une domination sur tout segment en
théorémes de ce chapitre : aucune démonstration

n’est au programme, il faut donc étre encore plus
irréprochable que d’habitude!

considérant des segments inclus dans... 'intervalle
sur lequel on intégre! C’est dans l'intervalle dans
lequel évolue le paramétre qu’il faut segmenter !
v Savoir trouver une fonction dominante. Autrement

dit, savoir majorer une quantité |f(z,t)| indépen-

damment de x. Au besoin, on peut considérer que

x ne varie que sur un segment [a, b].

15.1 Exercices de base

3
Exercice 1 (intégrales de Wallis). Déterminer lirf f cos"(t) dt grace au théoréme de convergence
n—-+0o0
0
dominée. Pouvait-on utiliser la convergence uniforme pour intervertir limite et intégrale ?
1

Exercice 2 Soit f:[0,1] — R continue. Déterminer lim f(z")dz.
n—-+o00 Jg

(o]
On rappelle que l'on pose, pour tout x > 1, {(z) = > n% (fonction zéta d’Euler-Riemann).

n=1
+o0 tP
Exercice 3 Montrer que pour tout p dans IN*, J 1 dt =pll(p+1).
0 e —
L In(t 37(2
Exercice 4 Montrer que J n(t) dt = _E
o 1—1t2 4

Exercice 5 (Cesaro intégral). Si f est continue par morceaux sur un segment [a, b], on appelle valeur

1 b
moyenne de f sur [a,b] la quantité 2 f f(z)dx.
—a),

Soit f : R4+ — R continue par morceaux admettant une limite finie £ en 400. Montrer que la valeur
moyenne de f sur [0,7n] tend vers ¢ quand n tend vers +oo.

15.2 Les grands classiques

n $2 n
Exercice 6 (l’astuce de la fonction indicatrice). Déterminer li_>m <1 — —) dz. Pour cela, on
n—0oo 0 n

remarquera que pour tout n dans IN*,

n 2\ " +o00 2\ "
f (1 - ”3) dz = f (1 - m) 1oy (z) da.
0 n 0 n

Exercice 7 (intégrale a paramétre). Soit I et J deux intervalles de longueurs non nulleset f : IxJ — R
une fonction telle que
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e pour tout ¢ dans I, z +— f(t,z) est de classe € sur J,
e pour tout x dans J, t — f(t,x) est continue sur I.

On suppose de plus que a € I et que b: J — [ est dérivable. Expliquer pourquoi la fonction

b(x)
o |

est dérivable sur J et déterminer sa dérivée.

Exercice 8 (lemme de factorisation de Hadamard). 11 est bien connu que si un polynéme P a pour
racine 0, alors il existe un polynéme Q tel que P = XQ. Cette propriété est toute aussi vraie pour les
fonctions DSEg. Cet exercice montre qu’elle est encore vraie pour les fonctions de €°°.

1. Soit f: R — R de classe 6 telle que f(0) = 0. Montrer que s'il existe une fonction g de classe
B> telle que f(z) = xg(x) pour tout x € R, alors g est unique.

2. Montrer que pour tout z € R, g(x f o f'(uz) du. En déduire que g est bien de classe €.

3. Montrer que cette propriété de factorlsatlon est fausse pour les fonctions seulement continues.

Exercice 9 (intégrale de Gauss, le tube inter-concours).
+oo

1. Prouver 'existence de J et dt, que 'on notera I.
0

2. On définit les fonctions f et g sur R4 en posant, pour tout x > 0,

1 e—(t2+1)w2 x 2
f@) = | Spat e gl = e

Aprés avoir dérivé f et g (en justifiant), établir une relation entre f et g.

3. En déduire la valeur de 1.

Exercice 10 Soit f : [0,1] — R continue. Pour chaque réel p de R, on pose F(p f o f()Pdt.
1. Montrer que F est dérivable sur R4 et calculer F'(0).

p—0

1 1/p
2. En déduire la valeur de lim <J f(t)? dt) .

Remarque. On peut montrer que hm (fo t)P dt) Y = sup | f|, d’ou Uexplication de la notation || f||cc-

)

Exercice 11 (transformée de Fourier, Centrale-Supélec écrits 2021). Pour toute fonction continue par
morceaux intégrable f : R — C (c’est-a-dire f € L!(R, C)) on définit une fonction f par

wWeR, f(v f f(t)e 3 e,

1. Montrer que f est correctement définie sur R et que f est une fonction bornée sur R (on note
A(R, C) I'espace des fonctions bornées).

2. Prouver que f est une fonction continue.

3. Justifier que f — f est une application linéaire continue de 'espace normé (LX(R,C), || - ||1)
dans l'espace normé (B(R, C), || - |leo)-

4. Soit k dans IN*. On suppose que t > tF f(t) est intégrable sur R. Expliquer alors pourquoi f est
de classe B* et calculer (f)*). A-t-on (f) = f/?

5. Déterminer f si f la fonction 1}_q q.
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Exercice 12 (intégrale de Dirichlet). On sait que I = 0+ > Sii&dt converge (mais pas absolument). On
se propose de (re)trouver sa valeur. On considére la transformée de Laplace du sinus cardinal, définie

par

+00 o3 t
VpeR., F(p)= f $in(®) ot gy,

0
Déterminer la limite de F en +o0.

Justifier que F est dérivable sur |0, +oo] et exprimer simplement F/(p) pour p > 0.
En déduire I'expression de F(p) quand p > 0.

On admet que F est continue en 0. En déduire la valeur de l'intégrale de Dirichlet.

RNl

(*) Montrer que F est continue en 0.

Indication. Découper Ry en segments de la forme [nm, (n+ 1)1 et utiliser une série alternée.

Exercice 13 (Centrale 2023, extrait). On cherche & donner un sens & ) a, pour certaines séries
nelN
divergentes ) ay,, en généralisant le procédé de sommation habituel.

Une suite de fonctions continues de Ry dans R, B = (fn)nen, est appelée famille de Bertrand
quand il existe M dans Ry tel que Vn € IN, 0 < f,, < M et quand fo—i-oo fn(t)dt = 1 pour tout entier n.
De plus, une série réelle Y a, est dite B-convergente quand

— la série de fonctions Y a, f, converge simplement sur R vers une fonction continue S,.

9e . —+oo
— lintégrale [ S,(t)dt converge.

Dans ce cas, le nombre 0+ G, (t) dt s’appelle la %B-somme de 3 a, et se note S Za,.
ne€lN

1. Si > ay, est absolument convergente, montrer qu’elle est %B-convergente pour toute famille de

Bertrand %, et calculer S *a,,.
nelN

2. On pose fp(t) = t—rie_t pour tout (n,t) dans IN x R4. Montrer que (f,,)nen est une famille de

n

Bertrand, que I'on notera 9. Montrer que 3 (—1)" est %B-convergente et calculer S %(—1)".
nelN

15.3 Exercices plus techniques

Exercice 14 (produit de convolution, Centrale-Supélec). Soit f : R — R continue et g : R — R de
classe ©€'. On suppose que g est nulle en dehors d'un segment [a, b].

1. Montrer que pour tout réel x, J f(t)g(x — t) dt converge. On note (f x g)(x) sa valeur.
R

2. Etablir que fxg = g * f.

3. Justifier que f x g est de classe B! et exprimer sa dérivée.

Exercice 15 (un théoréeme de Fubini). Soit f : [a,b] X [c,d] — K une fonction continue. Montrer que

Lb Ucdf(m,y) dy} dz = Ld Uab flz,y) dxl dy.

Remarque. Cette quantité est évidemment ff f(z,y)dzdy ou D est le rectangle [a,b] X [c,d].
D

+o0o
Exercice 16 (encore Euler! Centrale-Supélec). Nature et calcul de J In(z)e " dx.
0

n—1
Indication : on pourra se servir de fy, : x — (1 - f) Lio,m) ().
n ;
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Des espaces préhilbertiens réels

16.1 Faire le point sur le cours

Savoir montrer qu’une application est un produit
scalaire.

Connaitre les produits scalaires de référence.
Savoir énoncer et démontrer 'inégalité de Cauchy-
Schwarz.

Connaitre les formules de polarisation, et savoir &
quoi elles servent.

Savoir mettre en place l'algorithme de Gram-
Schmidt pour orthonormaliser une famille libre.
Connaitre les relations de base concernant I’ortho-
gonal d’une partie (renversement des inclusions,
etc.)

Connaitre la théorie du supplémentaire orthogonal
et du double orthogonal, en tout cas en dimension

Ecrire SchwarTz au lieu de Schwarz, et le prononcer
« chouarze »

Croire que la propriété d’étre positif pour un pro-
duit scalaire est le fait que (u | v) > 0 pour tous
vecteurs u et v : c’est (u | u) > 0!

Croire que (f, g) — ff fg est un produit scalaire sur
I’ensemble des fonctions continues par morceaux sur
[a,b] : Paspect non dégénéré n’est pas vérifié car la
continuité est manquante.

Croire que pour tout sous-espace vectoriel F d’un
espace préhilbertien E, on a toujours E = F @ F+.

Dire en kholle que toute forme linéaire d’un espace
euclidien est représentable et... ne pas savoir expli-
quer ce que cela veut dire.

finie.
e & Croire que tout hyperplan admet un vecteur nor-

avoir donner l'expression d’une projection ortho- gy
V'S p proj mal : c’est le cas dans les espaces euclidien cepen-
gonale dans une base orthonormale. dant

v Avoir compris comment les projections orthogonales
intervenaient pour le calcul la distance d’un point
4 un sous-espace de dimension finie. Bien connaitre
le cas particulier des hyperplans.

V' Savoir expliquer le lien entre formes linéaires et vec-
teurs d’un espace euclidien grace au théoréme de
Riesz.

16.2 Exercices de base

Exercice 1 (théoréme du losange). Soit (E, (-,-)) un espace préhilbertien réel.
1. Pour tous vecteurs z et y de E, démontrer que ||z| = |ly|| si et seulement si z +y L = —y.

2. Expliquer en quoi cela donne une caractérisation des losanges parmi les parallélogrammes.
P
Exercice 2 Soit n dans IN. Pour quelles valeurs de l'entier p lapplication (P,Q) — > P(k)Q(k)
k=0
est-elle un produit scalaire sur R,,[X].

oo
Exercice 3 Montrer que l'application (P, Q) — > e "P(n)Q(n) est un produit scalaire sur R[X].

n=0
Exercice 4 L’espace R[X] est muni des deux produits scalaires suivants
1 oo
v:(P.Q)— [ POQOA et §:(P.Q)— Y
k=0

(ou pg et g sont les coefficients de degré k des polynomes P et Q).
1. Pour quel produit scalaire X? est-il plus proche de R1[X] ?
2. On pose € = 107*2. Construire un produit scalaire sur R[X] de sorte que dist(X3?, Ry [X]) = ¢.

Exercice 5 Soit (E, (-, -)) un espace préhilbertien réel, et soit F et G des sous-espaces vectoriels de E.
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1. Montrer que (F + G)t = F- NGt et que (FNG)t > FL + Gt
2. Si E est de dimension finie, montrer que (F N G)+ = F+ + G*.

Exercice 6 (polynomes de Legendre). On munit R[X] du produit scalaire ¢ : (P, Q) — fil PQ. Appli-
quer le procédé de Gram-Schmidt sur (1, X, X?) pour obtenir une famille (Pg, P1,P2) orthogonale telle
que Px(1) =1 pour tout k.

Exercice 7 Soit (E, (-,-)) un espace euclidien et soit f € L(E) tel que (f(z),y) = (x, f(y)) pour tous
r et y dans E. Montrer que Im(f) = Ker(f)*.

1
Exercice 8 Soit f : [0,1] — R continue et positive. On pose I,, = f x" f(z) dz pour tout entier n.

0
Montrer que pour tous n et p dans N, (I,4,)? < Ionlap.
Exercice 9 L’espace R? est muni de son produit scalaire canonique.
1. Calculer la distance du point M = (1,2,3) au plan P : x + 3y — 2 = 0.
2. Calculer la distance du point M = (1,2, 3) a la droite D = Vectr((1,1,1)).
3. Mémes questions mais avec le plan affine % : x4 3y —2z = 1 et la droite affine @ = (2, —1,3)+D.
5 -2

1
B 1
Exercice 10 (Ecole Navale). Montrer que la matrice G —2 2 2 | représente une projection or-
1 2 5
thogonale sur un certain sous-espace que 'on déterminera.

Exercice 11 (autour de Riesz 1 : intégration numérique de Newton-Cotes).
1. Justifier 'existence de réels p1, p2, p3 tels que VP € Ro[X], fol P(t)dt = p1P(0)+p2P(5)+psP(1).

2. Déterminer de tels réels et en déduire une approximation décimale de In(2).

Exercice 12 (autour de Riesz 2, Centrale 2023). Soit n un entier naturel non nul.

n—1 n—1
1. Montrer que 'application ¢ : R,,—1[X] — R qui & tout polynome > axX* associe Y ay est une
k=0 k=0

forme linéaire.

2. En déduire qu’il existe un unique polynéme P de R,,_1[X] tel que V& € [0,n—1], fol 2FP(z) do =
1.

3. On note pg,...,pn—1 les coefficients de ce polyndéme P. Soit f dans €([0,1],R) vérifiant les
relations Vk € [0,n — 1], fol 2% f(x) dz = 1. Démontrer que fol f(@)?dr > po+ ...+ pn_1.

Exercice 13 (autour de Riesz 3).

1
1. Soit n dans IN. Montrer qu'il existe un unique polynéme A dans R,,[X] tel que P(0) = J P(t)A(t)dt
0

pour tout polynéme P de R,,[X]. Montrer alors que deg(A) = n. Indication : on pourra raisonner
par labsurde et considérer XA.

1
2. Montrer qu’il n’existe pas de polynéome A tel que VP € R[X], P(0) = J P(t)A(t) dt.
0

Exercice 14 (autour de Riesz 4). Si P et Q sont dans R[X], on pose (P, Q) = P(O)Q(O)—i—fo1 P(t)Q(t) dt.
1. Montrer que (-, -) est un produit scalaire sur R[X].
2. Montrer que I'application ¢ : P +— P(0) est une forme linéaire continue sur E.
3. Montrer que Ker(¢) est fermé mais que pourtant Ker(¢) @ (Ker(¢))* # E.

4. En déduire que la forme linéaire ¢ : P — P(0) n’est pas représentable (bien que continue).
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5. Dans un espace préhilbertien, si deux sous-espaces sont supplémentaires, leurs orthogonaux le
sont-ils aussi ?

Exercice 15 (Espace préhilbertien de dimension finie). Montrer que tout espace préhilbertien réel
de dimension finie est un espace de Hilbert, c’est-a-dire que toute série absolument convergente est
convergente. Indication : on pourra se servir de la « norme infinie » associée o une base.

Exercice 16 (un espace préhilbertien qui n’est pas de Hilbert). Si P et Q sont dans R[X] on pose
(o)

(P,Q) = > pnqn (ot py, est le n® coeflicient de P, idem pour Q).
n=0

1. Montrer que (P, Q) est correctement défini et que (-, ) est un produit scalaire sur R[X].
2. Montrer que la série ) Q%X” est absolument convergente, mais ne converge pas.
3. En déduire que (R[X], (-,-)) n’est pas un espace de Hilbert.

16.3 Les grands classiques

Exercice 17 (description des produits scalaires sur R™). Soit n dans IN*. On identifie R™ et Jl, 1 (R) :
le n-uplet (x1,...,x,) sera identifié & la colonne correspondante. Montrer que les produits scalaires sur
R™ sont exactement les applications de la forme

9y (X,Y) — XTAY

ot A € ;7T (R). Montrer de plus que A est unique : ainsi, I'application A — ¢, est une bijection de
S+ (R) dans I'ensemble des produits scalaires de R".

Exercice 18 Dans R? muni de son produit scalaire usuel, soit @ la droite affine passant par A =
(1,1,1) et dirigée par @ = (2,0, —3) et soit D’ la droite affine passant par A’ = (—1,0,2) et dirigée par
a = (1,1,2).

1. Montrer que & et 9’ ne sont pas coplanaires.

2. Déterminer une droite &” A la fois perpendiculaire & & et a D’.

Exercice 19 (Centrale-Supélec 2022). Soit n un entier naturel non nul et A dans Jl,(R).
1. Montrer que Ker(A) = Ker(AT - A). Indication : utiliser la norme euclidienne.
2. En déduire que Im(A) = Im(A - AT).

Exercice 20 Soit n un entier naturel non nul. On munit 4, (R) de son produit scalaire canonique.
1. Montrer que &, (R)* = o,,(R). Que vaut alors s,,(R)* ?
2. Calculer la distance de I, a o, (R).
3. Prouver que pour tout A dans Jl,(R), tr(A) < \/n\/tr(AT - A).

Exercice 21 (caractérisation des projections orthogonales). Soit (E, (-, -)) un espace préhilbertien réel
et p une projection de E. Montrer que

1. p est une projection orthogonale ssi Va € E, [|p(x)| < ||z| (inégalité de Bessel).
2. p est une projection orthogonale non nulle ssi |||p]|| = 1.

3. p est une projection orthogonale ssi Vx € E, (p(x),z) > 0.

Exercice 22 (décomposition QR). Soit n un entier naturel non nul et A dans GL,(R).

1. Montrer, grace au procédé de Gram-Schmidt appliqué aux colonnes de A, qu'il existe un couple
(Q,R) avec Q dans O,(R) et R triangulaire supérieure a coefficients diagonaux positifs tel que

A =QR.

2. Expliquer en quoi cette décomposition facilite la résolution du systéme linéaire AX = B.

68



1 1 0
3. Application 1. Trouver la décomposition QR de (1 0 1).
0 1 1

4. Application 2. Prouver que pour toute matrice A dans GL,(R), |det(A)| < [|Cq]| x ... x [|Cy]]
ou ||C;] est la norme euclidienne de la i° colonne de A (inégalité de Hadamard).

Exercice 23 Soit n un entier naturel. Grace a la théorie des projections orthogonales, déterminer la
valeur de

+00
inf j e (2" —a —bx)? da.
(a,b)eR? J

Exercice 24 (matrice de Gram, Centrale-Supélec 2022). Soit (E, (-,-)) un espace euclidien de dimen-

sion n (un entier non nul). Si (z1,...,2p) est une famille de p vecteurs de E, on note 4 (x1,...,xp)
la matrice de Jl,(IR) dont le terme de place (i, j) est (z;,z;) : c’est la matrice de Gram de la famille
(x1,...,2p). Son déterminant sera noté G(z1,...,xp).
1. Que vaut G(ey,...,ep) si (e1,...,ep) est une famille orthonormale ?
2. Montrer que si (x1,...,2,) est une famille liée alors G(z1,...,zp) = 0.
3. On suppose que (z1,...,xp) est libre, et on pose F = Vect(x1,...,x,). Si 9B désigne une base
orthonormale de F, on note M la matrice dont la ¢ colonne est formée des coordonnées de x;
dans 9.

(a) Exprimer 9(z,...,zp) en fonction de M et MT. En déduire que G(z1,...,z,) > 0.

(b) Montrer que si x € E, alors d(z,F) = \/G(x’xl’ e ,xp). On utilisera E = F @ FL
G(xl, e ,xp)
(c) Sia € E\{0g}, retrouver la formule « d(z, al) - |<W’ ﬁ>|
a

Exercice 25 (moindres carrés et équation normale, CentraleSupélec). Soit n et p dans IN* et A dans
My, p(R) (donc a priori non inversible puisque méme pas carrée). On cherche & résoudre le systéme
AX = B, la matrice colonne B étant donnée dans Jl,1(R), et 'inconnue étant dans Jl,;(R). En
général, il n’y a pas de solution & ce systéme, aussi pense-t-on a trouver les X* € M, 1(RR) tels que

JAX"~BJ| = min_[AX B,
Xedly,1(R)
ot || - || est la norme euclidienne sur Jl, 1(R) (on parle alors d’optimisation par les moindres carrés).
1. Montrer que X* réalise ce minimum si et seulement si ATAX* = ATB (équation normale).

2. Sirg(A) = p, montrer que ’équation normale admet une unique solution.
Indication : Ker(A) = Ker(ATA) d’aprés lexercice 19.

16.4 Exercices plus techniques

Exercice 26 (adjoint d’un endomorphisme). Soit (E, (-,-)) un espace préhilbertien réel et f dans &£ (E).
1. On suppose qu'’il existe g dans ZL(E) tel que

V(z,y) € B (f(x),y) = (z,9(y)).

Montrer que g est alors unique. Quand il existe, g se note f* et s’appelle I’adjoint de f.
2. Montrer que si E est de dimension finie, alors tout endomorphisme f admet un adjoint.

3. On suppose toujours E de dimension finie n, et on considére B = (ey,...,e,) une base ortho-
normée de E. Si M désigne Matg (f), déterminer Matg (f*).

4. Ezemple 1. On munit Jl,(R) de son produit scalaire canonique (rappeler sa définition a l’aide
de la trace). Si A et B sont deux matrices de Jl,(R), on considére ’application M — AM —MB
qui est évidement linéaire de M, (R) dans lui-méme. Déterminer son adjoint.
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5. Exemple 2. On munit 6([0,1],R) de son produit scalaire canonique (f, g) — fol fg. Pour tout f
dans 6([0,1],R) on note ®(f) la fonction de [0, 1] dans R définie par

voell, ()@ = [ Fod,
0
Montrer que ® est un endomorphisme de €([0, 1], R) qui admet un adjoint.

6. Ezemple 3. On munit R[X] du produit scalaire (P, Q) — fol P(t)Q(t)dt. Montrer que P — P(0)
est un endomorphisme de R[X] n’ayant pas d’adjoint (se servir de I’exercice 13).
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Des endomorphismes remarquables des espaces
euclidiens

v Avoir compris le lien entre isométrie linéaire et ma- & Croire qu’en dimension infinie, une isométrie est
trice orthogonale. toujours bijective (elle est seulement injective en
v Savoir démontrer que f(V*) = f(V)* si f est une général).
isométrie. & Croire qu'une matrice de déterminant 1 ou —1 est
V" Avoir compris que la relation M™M = I, signifie ni une matrice orthogonale.
plus ni moins que les colonnes de M forment une & Parler d’angle d’une rotation dans l’espace, sans
BON de Ay, (R). avoir orienté la droite de ses invariants.
v' Connaitre la description de O2(R) et SO2(R). & Croire qu'une matrice de SO3(R) est de la forme
v’ Savoir définir les notions de produits mixte et vecto- 1 0 0
riel. Connaitre 'interprétation géométrique de ces 0 cos® —sin® . elle n’est qu’orthosem-
produits. 0 sin® cosd
v Savoir définir une rotation dans ’espace, et savoir blable a cette matrice.
décrire ses éléments caractéristiques. & Oublier la dimension de &, (R).

v' Avoir compris le lien entre endomorphisme symé-

' ) o & N’énoncer que la moitié du théoréme spectral en
trique et matrice symétrique. disant que toute matrice symétrique réelle est dia-
v Savoir décrire les isométries symétriques. gonalisable : c¢’est beaucoup plus fort que ¢a!
v’ Savoir décrire les projections symétriques. & Croire que le théoréme spectral est valable pour les
v' Connaitre parfaitement le théoréme spectral. matrices symétriques complexes.

17.1 Exercices de base

Exercice 1 Soit E un espace euclidien et f dans O(E) diagonalisable. Montrer que f est une symétrie.

o0
Exercice 2 (Une isométrie non surjective) On munit R[X] du produit scalaire (P, Q) = > prqx (ou
n=0

pr et g sont les coefficients de degré k de P et Q). Montrer que 'application f : P +— XP est une
isométrie vectorielle, mais qu’elle n’est pas surjective.

1 0 0
Exercice 3 Soit  un réel. Pourquoi est-il trés facile d’inverser la matrice | 0 cos(8) —sin(9) | ?
0 sin(d) cos(9)

Exercice 4 (Ecole navale). On munit R? de sa structure euclidienne orientée canonique. On note s la
réflexion (vectorielle) par rapport a la droite D d’équation 2x + 3y = 0.
Déterminer I'expression analytique de s, c’est-a-dire s(z,y) en fonction de z,y.

Exercice 5 (Ecole navale). On munit R? de sa structure euclidienne orientée canonique. Déterminer
analytiquement la réflexion vectorielle s par rapport au plan P d’équation 2x +y — z = 0.

Exercice 6 (Centrale-Supélec, extrait). Montrer que le plus petit sous-espace vectoriel de Jl2(RR) conte-
nant SO2(R) est
a by, 2}
(% D) wner)

. 1/ 2 2 -1 _ _

Exercice 7 On pose A = 3 -1 2 2 ]. Montrer que A est la matrice d’'une rotation et déter-
2 -1 2

miner ses éléments caractéristiques.
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1 6 3 x
Exercice 8 On pose A = - ( -2 6 x > Compléter A pour que ce soit la matrice d’une rotation.

3 k%
Déterminer ses éléments caractéristiques.

Exercice 9 (rotations et produit vectoriel). Soit E un espace euclidien orienté de dimension 3.

1. Si R est une rotation vectorielle de E, montrer que R conserve le produit vectoriel, c’est-a-dire
V(z,y) € B2, R(z Ay) = R(z) AR(y).

2. Réciproquement, si f un endomorphisme non nul de E qui préserve le produit vectoriel, montrer
que f est une rotation.

2 1 2
1
Exercice 10 (antirotation). On pose A = 3 2 -2 —1 |. Montrer que A € O5 (R) et donner
-1 -2 2
ses éléments caractéristiques.

Exercice 11 Soit n dans IN* et A dans J(,,(R). On munit /,,(R) de son produit scalaire canonique. On
My(R) — J,(R)

M — A-MT-A.
de J,,(R). Trouver une matrice A pour laquelle fa est positif et une matrice A’ pour laquelle fa/ n’est
pas positif.

définit 'application fa : Montrer que f est un endomorphisme autoadjoint

Exercice 12 Soit n dans IN* et A dans Jl,(R), espace qui est muni de sa structure euclidienne ca-
nonique. Donner une condition nécessaire et suffisante sur A pour que M — AM soit une isométrie de
M (R).

Exercice 13 (Ecole polytechnique). Soit P le plan vectoriel de R* engendré par u = (1,0, —1,1) et
v =(0,2,-3,1).

1. Décrire P par un systéme de deux équations linéaires.

2. Déterminer la projection orthogonale du point M = (1,1,1,1) sur P.

Remarque. Malgré la simplicité de cet exercice, le jury rapporte qu’il a mis en difficulté la plupart des
candidats.
17.2 Les grands classiques
Exercice 14 Soit n un entier naturel non nul et A dans o, (R).
1. Montrer que si F est un sous-espace stable par A, alors F aussi.
) 0|0 . .
2. Montrer que A est semblable & une matrice de la forme (ﬁ) ot A’ est antisymétrique

inversible. En déduire que rg(A) est pair.

Exercice 15 Soit E un espace euclidien et f un endomorphisme autoadjoint de E. Démontrer que
Ker(f) et Im(f) sont supplémentaires et orthogonaux.

Exercice 16 Soit E un espace euclidien.
1. Montrer que I'ensemble des projections orthogonales est une partie fermée-bornée de £ (E).
2. Montrer que ’ensemble des symétries orthogonales est une partie fermée-bornée de £ (E).

3. Montrer que ces deux ensembles sont en bijection.

Exercice 17 (la plus grande valeur propres). Soit f un endomorphisme autoadjoint d’un espace eucli-
dien E. On note Ay > kg9 > ... > )\, ses valeurs propres. Démontrer que

A = ﬁgﬁ:xl<f(x),rc
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Exercice 18 (Mines-Ponts, Centrale-Supélec). Soit E un espace euclidien et f dans £(E) préservant
Iorthogonalité :
V(z,y) € B, = Lly= f(z) L f(y).

1. (lemme du losange) Si u et v sont unitaires, montrer que u +v L u — v.

2. Démontrer qu’il existe £ > 0 tel que Vz € E, || f(z)]| = k=]

3. En déduire qu’il existe g dans O(E) tel que f = kg.
Exercice 19 (matrice d’une forme bilinéaire). Soit E un R-espace vectoriel de dimension finie n. On
note & = (ey,...,ey) une base de E. Si ¢ : E? — R est une forme bilinéaire sur E, on pose

Matg () = (CP(% ej))

et on dit que c’est la matrice de ¢ dans la base .

1<i,j<n

1. Montrer que si X et Y sont les colonnes des coordonnées de deux vecteurs x et y dans la base
B, alors @(x,y) = XTAY ot A = Matg(¢p).

2. Si A et A’ représentent ¢ dans deux bases différentes, montrer qu'il existe P dans GL,,(R) telle
que A = PA’PT (on dit que A et A’ sont congruentes).

3. Montrer que ¢ est symétrique si et seulement si Matg(¢) est symétrique.

4. Montrer que ¢ est un produit scalaire si et seulement si Matg(¢) € 77 (R).

Exercice 20 (quasi réduction simultanée). Soit n dans IN*, A dans &, T (R) et B dans &, (R).
1. Justifier que ¢ : (X,Y) — XTAY est un produit scalaire sur Jl, ;(R).
2. En déduire qu’il existe P dans GL,(RR) et D diagonale telles que A = PTP et B = PTDP

17.3 Les exercices plus techniques

Exercice 21 (Mines-Ponts). Soit a un réel. Dans I'espace Ml2(R) (muni d’une norme quelconque),

déterminer
1 —a\"
] n
pm (o)
n

Indication : remarquer que la matrice sous la limite est « presque » une matrice de rotation.

Exercice 22 (Isométries d’un espace euclidien). Soit E un espace euclidien et f : E — E une applica-
tion telle que f(Og) = Oy et || f(z) — f(y)|| = ||z — y|| pour tous x et y dans E.
1. Montrer que f est linéaire et que f € O(E).
Indication. On pourra montrer que ||f(Ax) — Af(z)||> =0 et || f(z+vy) — f(z) — fF(y)|> =0
quel que soit (A, x,y).
2. Que peut-on dire si on enléve 'hypothése f(Og) = O0g 7

Exercice 23 (Centrale-Supélec). Soit n dans IN* et V un sous-espace vectoriel de Jl,,(R) ne contenant
que des matrices dont le spectre (réel) est ou bien vide, ou bien réduit a {0}.
1. Montrer que dimV < @
Indication : quelles sont les matrices symétriques appartenant a V 7

2. Prouver que cette inégalité est optimale.

EUcCLIDE D’ ALEXANDRIE David HILBERT

~ 300 av. J.-C. (1862-1943)
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Des variables aléatoires a densité (*)

18.1 Exercices de base

Exercice 1 Soit A un réel strictement positif. Si A ~> €()), on considére le polynéme aléatoire
X2+ 2(A —2)X 4 2A — 4.
Quelle est la probabilité que P ait ses racines réelles ?

Exercice 2 Soit A > 0 et X ~ €(}).
1. Montrer que X est sans mémoire, c’est-a-dire Vs, t > 0, P(x54)(X > s +1t) = P(X > t).

2. Réciproquement, si Y est une VAR continue sans mémoire, presque stirement positive et telle
que Fy(z) < 1 pour tout z € R4, montrer que Y suit une loi exponentielle, dont on précisera
le paramétre A > 0.

On pourra utiliser le résultat classique de Sup : les seules fonctions continues f : R — R telles que
flx+y) = f(z)f(y) pour tous z ety sont de la forme x — e* pour un certain réel a.

Exercice 3 Soit X ~» 9 (0,1). Montrer que le couple aléatoire (X, X) n’admet pas de densité.

Exercice 4 Dans une station-service, la demande hebdomadaire en essence (en millier de litres) est
une variable aléatoire X de densité f: x — c(1 — $)3]1[071], ol ¢ > 0 est une constante.

1. Déterminer la constante c.

2. La station est réapprovisionnée chaque lundi & 20 heures. Quelle doit étre la capacité de la
citerne pour que la probabilité d’avoir une pénurie soit inférieure a 107°?

Exercice 5 (loi de Laplace) On dit qu’'une variable aléatoire suit une loi de Laplace quand elle admet
T %e*m pour densité.
1. Vérifier qu’il s’agit effectivement d’une densité de probabilité.

2. Si X suit une loi de Laplace, montrer qu’elle admet des moments a tous les ordres, et les calculer.

18.2 Détermination de lois

Exercice 6 Montrer que I'inverse d’une variable aléatoire suivant la loi de Cauchy 6(0, 1) suit encore
la loi 6(0,1).

Exercice 7 (stabilité des lois normales)

2
1. Soit X ~» N (0,1). Montrer que Vt € R, ¢ (t) = 7. On pourra résoudre une EDLI.

2. Soit X ~ N(y,02) et Y ~» N (m,s?) que 'on suppose indépendantes. Montrer que X + Y ~»
N +m,o? 4 s?).

Exercice 8 (stabilité des lois gamma) Les VAR considérées sont toutes définies sur un méme univers.
Soit v et v/ dans R*.

1. Si X ~ y(v), montrer que ¥t € R, ¢y (t) = (1 +t2)"2eVAretan(t) Sj v € IN*, montrer de plus que
oy (t) = (111;3 )V pour tout t € R.

2. En déduire que si X ~ y(v) et Y ~ y(V/) sont indépendantes, alors X + Y ~» y(v 4+ V).
3. Quelle est la loi de X3 + ...+ X, si les X; sont indépendantes suivant toutes €(1) ?
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Exercice 9 On dit qu’une variable aléatoire réelle X suit la loi de I’Arc-sinus 9 quand elle admet

fix— ﬁﬂ]_m[(:ﬁ) comme densité.

1. Vérifier que cette fonction est bien une densité de probabilité et déterminer la fonction de
répartition F correspondante.

2. Si © ~ U(] — n,7]), montrer que cos © et sin © suivent la loi df.

Exercice 10 Si X et Y sont indépendantes de densités respectives fx et fy, on sait que X+ Y a pour
densité fx * fy.

1. Expliquer pourquoi fx + fy ne peut jamais étre la densité de X + Y.

2. Aprés avoir justifié que %(fX + fy) était elle aussi une densité, déterminer une variable aléatoire
7 ayant cette densité.

3. Plus généralement, si A € |0, 1], déterminer une VAR Z ayant Afx + (1 — ) fy comme densité.

Exercice 11 Soit n dans IN*. On appelle loi du khi-deux & n degrés de liberté la loi de X2 + ... + X2
quand Xi,...,X, sont des variables aléatoires indépendantes suivant toutes la loi normale N (0, 1).

1. Déterminer une densité de X? et démontrer que c’est la densité de 2Y7 si Y1 ~ y(v) avec v bien
choisi.

2. En déduire une densité de y2(n) (on pourra se servir de la stabilité des loi gamma). Que retrouve-
t-onsin =27

Exercice 12 Soit X et Y deux VAR indépendantes suivant la loi normale W/ (0, 1). Montrer que % (qui
est définie presque siirement partout) suit la loi de Cauchy 6(0, 1).

18.3 Détermination d’espérance et de variance
Exercice 13 Soit X~ N (0,1).
1. Déterminer la loi et I'espérance de Y = X|X].

2. Calculer la covariance Cov(X,Y).

Exercice 14 Soit X une variable aléatoire positive admettant une densité f. On suppose que X admet
une espérance. Si Fx désigne sa fonction de répartition, démontrer que

+00
B(X) = fo (1 — Fx(2)) da.

o0
Remarque. Cette formule est l’exacte généralisation de E(X) = > P(X > n), qui a été démontrée pour
n=1

les variables aléatoires a valeurs dans IN.

Exercice 15 On lance une fléchette sur une cible circulaire représentée par le disque unité D(0,1). On
modélise la situation en disant que la probabilité que la fléchette se plante dans une partie A de D(0, 1)
(supposée étre borélienne...) est proportionnelle a I'aire de A.

1. Si X est la variable aléatoire mesurant la distance de la fléchette au centre de la cible, montrer
que X admet une densité.

2. Calculer E(X) et ox. Et la médiane de X7

75



Exercice 16 Une grenouille avance (sans jamais reculer) en faisant des bonds indépendants, aléatoi-
rement uniformes entre 0 et 1 métre.

1. Quelle est la distance moyenne aprés deux sauts ?

2. De fagon surprenante, établir que le nombre moyen de sauts nécessaires pour dépasser 1 métre

n’est pas 2.
Exercice 17 Soit n dans IN* et Xy, ..., X, un échantillon finie d’'une méme VAR X que I'on suppose
admettre une densité f : les variables aléatoires X1, ..., X,, sont donc indépendantes, de méme loi dont

f est une densité. On pose alors
Sy, = max(Xy,...,X,) et I, =min(Xy,...,X,).

1. Déterminer les fonctions de répartition des variables aléatoires S,, et I,, et montrer qu’elles ont
des densités que ’on explicitera.

2. Tracer ses densités pour n = 3 et X ~» U(0,1).
3. Déterminer E(S,) et E(I,,) quand X ~» €(X). Donner un équivalent de E(S,,) quand n — oo.

Exercice 18 A et B se fixent un rendez-vous dans un bar branché du 6¢ arrondissement de Paris, entre
0 h et 1 h du matin. On suppose que chacun arrive a un instant aléatoire suivant la loi %% (0, 1).

1. Calculer le temps moyen d’attente de la premiére personne arrivée sur les lieux.

2. On note X; et Xy les heures d’arrivée de la 1™ personne et de la 2° personne. Déterminer les
lois de X et Xy ainsi que leur coefficient de corrélation py .

3. A veut bien attendre au maximum 30 min avant de repartir s’il ne voit pas arriver son compére.
B est moins patient : il n’attend que 15 min tout au plus. Quelle est la probabilité que nos deux
lascars se voient ?

18.4 Modes de convergence

Exercice 19 Pour tout entier non nul n, on suppose que X, ~» (0, ). A-t-on convergence en loi de
(Xn)nE]N* 7?7 Et si Xn ~ 62[(07 n) ?

Exercice 20 Soit (X,,)nen+ un échantillon de la loi % (0,1). On pose M,, = max(Xy,...,X,) et on
considére Y, = n(1 — M,,). Démontrer que Y, 2, €(1).
n—o0

Exercice 21 On fait tomber une boite de 9000 dés (a six faces).

1. Estimer la probabilité d’obtenir un nombre de « 6 » compris entre 1450 et 1550 grace au
théoréme limite central.

2. Comparer avec ce que donnerait I'inégalité de Bienaymé-Tchebychev.

3. A l'aide d’un ordinateur, calculer la véritable valeur de cette probabilité.

Exercice 22 (théoréeme de Khintchine). On souhaite baisser les hypothéses de la loi faible des grands
nombres. Soit (X;,)nen+ une suite de VAR (& densité ou discrétes) indépendantes, admettant un moment
d’ordre 1 (seulement !) mais suivant toutes la méme loi qu'une VAR X donnée.

1. Donner I'expression de la fonction caractéristique ¢, de M,, = %

en fonction de ¢y.
2. Donner le développement limité a 'ordre 1 de ¢y en 0.

3. En déduire la limite de ¢, () quand n tend vers 400, et conclure par le théoréme de Lévy.
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Des distributions (x)

19.1 Exercices de base

Exercice 1 Parmi les fonctions de @ dans R suivantes, dire lesquelles sont des distributions.
L g [ o) dt.
1

2. ¢ — [y o(t)| dt.

N
3. g — > 0™(0) (ou N € IN).

n=0
49— > cp(”)(O).

n=0

5 ¢ +— Tgocp(n).

6. ¢ — [ Tt(li‘) dt (o o € R).

Exercice 2 Pour tout entier n, on pose f,, = x — sin(nz).
1. Montrer que (f,,)nen ne converge pas simplement sur R.

2. Montrer cependant que (f,)nen converge au sens des distributions (i.e. dans @’) vers 0.

Exercice 3 On note II 'indicatrice de [—1, 1] (fonction porte). Pour tout entier n et tout réel x, on
pose
fn(x) = nll(nx) et gn(z) = n*(nz).
1. Montrer que (fy,)nen converge au sens des distributions (i.e. dans @’) vers la distribution de
Dirac 8.

2. Montrer que (gp)nen ne converge pas dans @'.

Exercice 4 Dériver au sens des distributions les fonctions suivantes.
1. La fonction valeur absolue x — |z|.
2. La fonction porte II = 1;_y ;.

3. La fonction signe sgn (qui vaut 1 sur R*, —1 sur R* et 0 en 0).

Exercice 5 (moment dipolaire). On pose, pour tout entier non nul n, II,, = ]1[_ 11y Montrer que

IT),ew+ converge dans '.
n

Exercice 6 Soit f dans €*°(R,R) et T dans @’. Montrer que (fT) = f'T + fT'.

T T-T

1
n

Exercice 7 Soit T dans @’. Montrer que la suite ( > converge dans @’ vers T".
nelN*

1
n

19.2 Transformée de Fourier

Exercice 8 Montrer que & : &’ — %' est continue.

Exercice 9 Sia € Ret T € @', déterminer F[t,T| et F[u,T].

2intvox 2invox

Exercice 10 Soit vy un réel. Déterminer F[e?™0%] ou e désigne Ty, ou f =z e
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De la théorie de Fourier (x)

20.1 Développement en série de Fourier

Exercice 1 Soit T > 0. Expliquer pourquoi il n’existe aucune fonction réelle, T-périodique, continue
par morceaux telle que ses coefficients de Fourier soient a, = ﬁ et b, = 0 pour tout n dans IN*.

Exercice 2 Soit f la fonction paire, définie sur R, 2rn-périodique telle que f(z) =1 — %x pour tout x
dans [0, t].

1. Développer f en série de Fourier.

oo o0 [e.e]
2. En déduire les valeurs de Y 5, >° m et de > 7.
n=1 n=0 n=1

Exercice 3 Montrer que x — = — |z | est périodique. Donner son développement en série de Fourier.

oo .
En déduire la valeur de ) %
n=1
Exercice 4 Soit f la fonction impaire, définie sur R, 2rn-périodique telle que f(x) = x(n — x) pour
tout = dans [0, 1t].

1. Développer f en série de Fourier.

i G R S S
2. En déduire les valeurs de n§0 CTESIEL ngo CIESIE et de ngl 5

Remarque. Les valeurs de {(2k) (si k € IN*) sont toutes bien connues. En revanche, celles de {(2k+1)
restent mystérieuses. On sait seulement (depuis 1963) que {(3) ¢ Q.

(o) o0
3 _1 1
Exercice 5 En se servant de ch, trouver les valeurs de 21 Tz et de 21 (TR
n—= n=

Exercice 6 Soit o dans R ¢ Z. On note f la fonction définie sur R, 2n-périodique, telle que f(z) =
cos(ax) pour tout x dans [—m, 7i].

1. Développer f en série de Fourier.

2. En déduire une formule due & Euler :

1 1 2z
Vo € R\Z, cot(ra) = — 4+ - =
n=1

20.2 Grands classiques

Exercice 7 (inégalité de Wirtinger). Soit f : R — C admettant une dérivée f’ continue par morceaux.

2n 2n 2
On suppose que f(t)dt = 0. Montrer que J |f/ ()2 dt > J |£(t)|? dt. Etudier le cas d’égalité.
0 0 0

21
En déduire que || f||% < % 712 dt.
0
Exercice 8 Soit f la fonction impaire et 2n-périodique définie par f(z) = 5% si x € ]0, 7] et soit g

définie sur R par g(z) = f(z + 1) — f(z — 1).

1. Déterminer les séries de Fourier de f et g.
P s sin(n) X sin?(n)
2. En déduire que ) =~ = > =5~

n
n=1 n=1

Remarque amusante. 1l est facile de montrer (ipp) que f;oo Sh;(t) dt = 0+°O Sin;(t) dt.
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Alphabet grec

Ao BB I'y| AB
alpha béta gamma delta
Ee Z¢ Hn ©9
epsilon zéta éta théta
I v Kx AAX Muyu
i0ta kappa lambda mu
Nv =Z2Z& Oo IITr
nu ksi omicron pi
Peol Y0 Tt YTuvu
rhé sigma tau upsilon
Dol Xy ¥ Qo
phi khi St omega

Attention a la position des lettres (3, v, u, o, @, %, ¢ : elles descendent sous la ligne, comme le font les
lettres p ou ¢. De plus, en cursif, y forme une boucle bien visible (ne pas écrire une sorte de y)

La lettre o s’écrit ¢ en fin de mot uniquement : cette graphie n’est pas utilisée en sciences.

La lettre n s’écrit aussi w, surtout en écriture manuscrite : parfois utilisée en Physique.

Quelques étymologies grecques en Mathématiques.

— povddve : apprendre. Ex : mathématique.
— 1 pop®t : la forme. Ex : morphisme.

— €vdov : a l'intérieur. Ex : endomorphisme.
— loog : égal. Ex : isomorphisme.

— qutdc : lui-méme. Ex : automorphisme.
— moA0¢ : nombreux. Ex : polyndme.

— povocg : un seul. Ex : mondme.

— U6 : en dessous. Ex : hypotheése.

— 1 Boly, : action de lancer. Ex : parabole.

— mopd : prés de, le long de, chez. Ex : parabole.

— 10 Yévoc : race, naissance. Ex : générateur.
— 0 apwiyoc @ le nombre. Ex : arithmétique.
— 0 1to0mo¢ : le lieu. Ex : topologie.

— Yewpéw : contempler. Ex : théoréme.

— 710 €idoc : aspect extérieur. Ex : ellipsoide.
— 1) oluntwolc : la rencontre. Ex : asymptote.
— O xUxhoc : le cercle. Ex : cycloide.

— 10 Yétpov : la mesure. Ex : isométrie.

— Popic : lourd. Ex : barycentre.

— 06p06¢ : droit. Ex : orthogonal.

— Umép : au dessus. Ex : hyperbole.

— ¢émni : sur. Ex : épimorphisme.

— GAAMAwY @ les uns les autres. Ex : paralléle.
— 0 ToUo¢ : le morceau coupé. Ex : dichotomie.
— 1 €0pa : Ex : le siége. Ex : polyedre.

— 0 yopaxthe : 'empreinte. Ex : caractéristique.
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Formulaire de Trigonométrie circulaire

cos(f + g) = —sin()

sin(0 + g) = cos(f)
™
0 —
N 2
cos(m — 0) = — cos(6)
sin(m — 0) = sin(0)

T—0 g

cos(g — 6) =sin(0)

sin(g — 6) = cos(9)

cos(f + ) = — cos(6)
sin(f + 7) = —sin(6)

Relation « de Pythagore ».

cos®(a) + sin(a) = 1

Formules de transformations.
cos(a + ) = —cos(a)

cos(—a) = cos(a)

Formules d’addition.

sin(a + n) = —sin(a)
sin(—a) = —sin(a)
sin (5 —a) = cos(a)

sin (a4 §) = cos(a)

« costnus = non mélange-non respect » et « sinus = mélange-respect ».

cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

sin(a 4+ b) = sin(a) cos(b) + sin(b) cos(a)

sin(a — b) = sin(a) cos(b) — sin(b) cos(a)

tan(a + b) =

tan(a) + tan(b)

Formules de duplication.

cos(2a) = cos?(a) —sin?(a) = 2cos?(a) —1 =

sin(2a) = 2sin(a) cos(a)

2tan(a)

tan(2a) = T tan’(a)’

1 — tan(a) tan(b)

tan(a — b) tan(a) — tan(b)

1+ tan(a) tan(b)

1 — 2sin%(a)
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Formules de ’arc-moitié. Si 9 € | — n, n[ on pose ¢t = tan(9/2). Alors,

1—¢2 2 2

cos(9) = TI e sin(9) = Tog tan(9) = L

Formules de linéarisation.

cos(a) cos(b) = cos (a — b) + cos(a + b)

2
. ) _ cos(a —b) —cos(a+ b)
sin(a) sin(b) = 5
: _sin(a — b) + sin(a + b)
sin(a) cos(b) = 5 .
1 2 1 — cos(2
B pasticutir, costa) = 1 T°2) gy 1= €0520)

Formule du déphasage. Si a,b sont des réels,
acos(zx) + bsin(x) = rcos(x — 0)

ou r = |a + bi| et 9= arg(a + bi).
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Fonctions usuelles

Tracer une courbe demande :

— des azes proprement dessinés a la régle avec les unités marquées,

— de dessiner les tangentes remarquables et asymptotes avant la courbe,

— un graphique soigné de la courbe en précisant les intersections avec les axes.

,
.
,
,
.
7
2y=x
,
.
.
7
32
a
A
e s
5 -4 3 -2 -1 1 2 3 4
y = th(z)
- *" Y=
: : T
x=-3mn/2 X ==(n/2)
3
2
’
’ 1
.
2 ’
sy=x
= gin(z ’
y = sin(x) . ("
Y
’
Zon . n on N
y = cos(z -2
7
’
4 -3
’
s -2
’
’ -4
’
e
y = Arccos(z
i
ER T s o5 T s
35 = 25 2 s 1 <5 os 1 15 2z 25 3 35
y = Arcsin(a
y = Arctan(z
- - ER
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Formulaire de dérivées

Dy f(z) f(@ Dy
R: | 2* (x€R) a1 RY
R* i w*l ( 1)1_7171 — i R*
x x?
_ 1 1 11 _ 1 *
Re | Ve 2,72 2" T oz RS
n _ 1 1 14 _ 1 *
R+ x iilg_’nif Tn Exn = = R*
R || =z R*
|z
R e’ e’ R
1
R% In(z) - R
x
Fonctions hyperboliques
Dy f(@) f'(z) Dy
R | ch(z) = % sh(z) R
R | sh(z) = ¢ _26 ch(z) R
e¥ —e™® 1
R | th(z) = — | 1 —th%(z) = R
Fonctions circulaires
Dy f(z) f'(z) Dy
R cos(x) —sin(z) R
R sin(x) cos(z) R
Z t 14 tan? () = — z
r# 5 [n] an(z) + tan”(z) = m r# 5 [
[—1,1] | Arccos(x) ! ] —1,1]
’ i !
[~1.1] | Arcsin(a) = |- L[
-1, resin(w -1,
V1— 22
R Arctan(z) 1 R
rctan(x 522
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Formulaire de primitives

La notation (vieillotte et peu rigoureuse) « f f(x)dz » désigne une primitive quelconque de la fonc-

tion continue f sur un intervalle. On ne ’utilise que dans des formulaire comme celui qui va
suivre : n’écrivez pas des intégrales sans bornes sur vos copies !

dr ~ In(la]) Jmadaz _ (o0 £ 1)

Jcos(m)dx = sin(x) fsin(w)dx = —cos(x)

oo = @ |55 - el -2
[ = wane D] |y = (@)
[tanade = —m(eos@)) | [the)de = In(en(s)

f ch(z)dz = sh(z) f sh(z)de = ch(a)

Jemdx _ %em, (m € € Jazd:c _ hf(a;>,(a>0,a7é1)
Jire - | [ - Aw

d d 1 d
Exemple. Pour trouver f z on écrit Jx = fx2, et on fait le changement de
5+ 2 5+a 5 1+ ()
V5

variable t = %, qui donne dt = %. D’ou

dx 1 +/5dt V5 1 ( z )
=— =—A = —Arct — .
J e il s 3 rctan(t) 7 rctan 7
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Développements en série entiére usuels

Les DSE( marqués du symbole () sont & connaitre ou a retrouver rapidement. Les autres sont
donnés a titre informatif. On a précisé, pour chaque DSEg, les premiers termes du développement.

VARIABLE COMPLEXE

oo
1 2 3
(%) ezzzmz” l+z+5+%+... | R=400
n=0
1 o
(%) 1_2:22'” l+z+22+28+...| R=1
n=0
£\ 5
L’égalité ﬁ = Y 2" n’a lieu que lorsque |z| < 1. Il n’a donc aucun sens de dire que
n=0
oo
DA ﬁ = —1. Cette identité est cependant vraie dans d’autres mondes que C : dans le corps
=0

n=
ultramétrique Qo des nombres 2-adiques par exemple.

VARIABLE REELLE

Conséquences du DSE de €”

n=0
oo
(%) ch(a:)—Z;L)! 2n 1+ %5 + 5+ R =400
c>On:0
(%) | sh(x) 2(27111)! R I R = +o0
=0

1 [e¢]
(%) 1+x:Z(—1)"az" l—-z+a2?—22+2'+... |[R=1
n=0
OO(—l)n_l 2 3 4
()| mA+a)=> " - 4Ly R=1
n=1
1 o0
(%) 14_332:2( 1) 1— 2?4t — 20+ R=1
n=0
= (1) o
() Arctan(x)zz2n+1x2"+1 x—%d+%—x—77+... R=1
n=0
— 1
3 5 7
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£

="

2n+1
Int+1 v

2

€ ]—1, 1] (ailleurs, la série diverge).

Conséquences du DSE de (1 + z)*

vaut 1, et non +oo. Ainsi, I'égalité Arctan(x) =

La fonction Arctan a beau étre définie sur R, le rayon de convergence de sa série entiére

="

2n+1
Int1 v

>

n=0

n’a lieu que lorsque

o
o ao—1)...(a—n+1) , (a D2 R=1siae C\N
(*) | 1+=x) _50 p x 1+oax+ = +... R — 400 sioe N
n=
"12n 2 3 5t
1+m—1+§ '24n @n—1) I+5 -5+ T+ R=1
1 = (2n)! > a4 6
=) 14 % 43820 4 52”4 R=1
J1 — 2 Z 12 2 3 16
1—=x =0 4”(71)
s 5 7
3
Aresin() =3 Al IERE R DX S R=1

Notation. Il est d’usage de noter (;‘:) le nombre complexe

141
2

>:

(1+i)1+i—1)

2!

a(a—1)...(a—

#. Par exemple,

1 i

= 5

Sia e N etsin < a, on retrouve le célébre coefficient binomial et le DSE écrit ci-dessus n’est autre
que notre bonne vieille formule du binéme (la somme est alors finie).
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